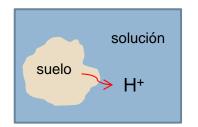

ACIDEZ DEL SUELO

Dr. Armando Tasistro
Director, México y América Central, IPNI, Norcross, GA, EE.UU. atasistro@ipni.net

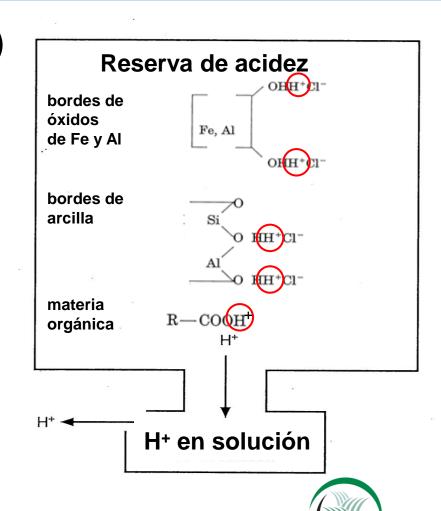
Temario

- Medición de la acidez de los suelos
 - Capacidad/intensidad
 - Medición del pH de los suelos
- ¿Por qué se acidifican los suelos?
- Consecuencias de la acidificación
- ¿Cómo podemos corregir la acidez de los suelos?
- Análisis de ejemplos

Medición de la acidez


Ácido

Compuesto que cede H⁺


$$HCI \rightleftharpoons H^+ + CI^-$$

Capacidad vs. Intensidad

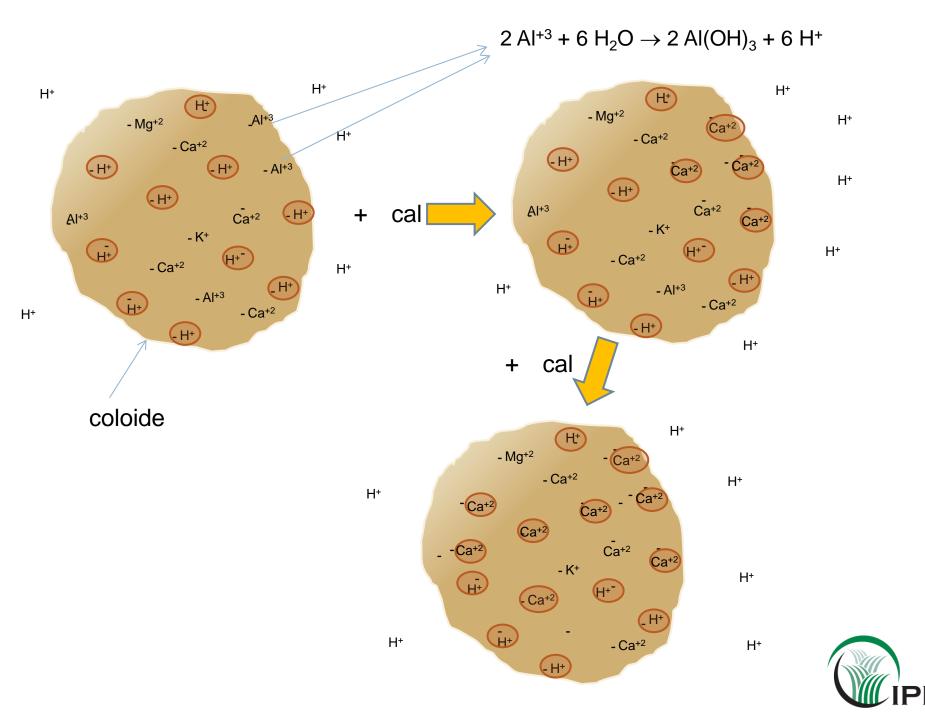
- Intensidad (H+ en solución)
 - lo que está (= concentración)vs. lo que actúa (= actividad)
 - medida por pH
- Capacidad (= reserva)
 - capacidad amortiguadora (búfer o tampón)
 - requerimiento de cal

pH de suelo

- Mide intensidad de acidez del suelo
- No informa sobre la cantidad de acidez que va a reaccionar con cal

requerimiento de cal

 Cantidad de cal necesaria para elevar el pH de un peso o volumen de suelo contenido en un área conocida a un valor especificado

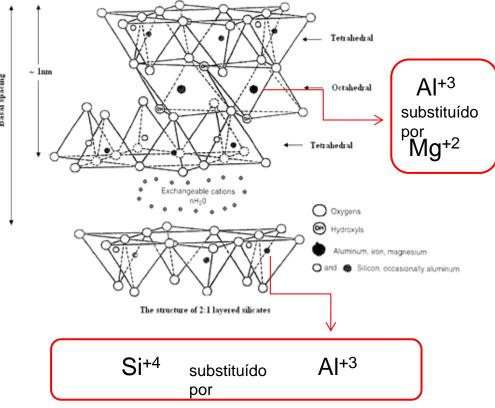


Cal para llegar a pH 6.5 en dos suelos a pH 4.0

- Suelo de textura gruesa, con poca materia orgánica, baja CIC
- Requerimiento de cal ~ 1 t ha⁻¹

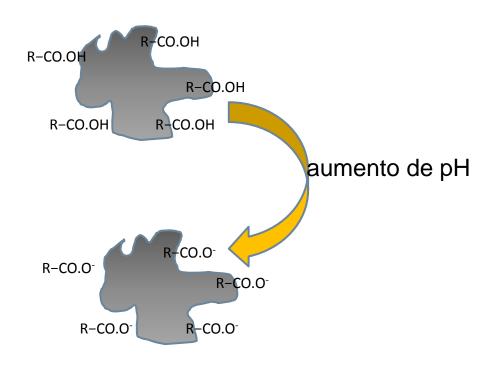
- Suelo de textura fina, con alta materia orgánica
- Requerimiento de cal ~ 25 t ha⁻¹

Carga eléctrica de suelos


- Permanente
 - originada por substituciones isomórficas en arcillas
 - deja de contribuir acidez a pH ~ 5.5

- Variable
 - asociadaprincipalmente con materia orgánica

Cargas eléctricas permanentes


Estructuras de arcillas

Cargas eléctricas variables

- Dependen del pH
- Materia orgánica

pН

- □ ¿Qué es pH?
 - $\square pH = log [1/(H^+)]$
 - (H⁺) = actividad de iones de H
- Producto iónico del agua
 - agua se disocia: H₂O ⇒ H⁺ + OH⁻
 - \Box (H⁺) x (OH⁻) = 10⁻¹⁴
 - \Box (H⁺) = (OH⁻) = 10⁻⁷ moles/L (0.0000001 moles/L)
 - pH 7.0
- Escala del pH
 - 0 (muy ácido) a 14 (muy alcalino)

pH del suelo

- Es una determinación relativamente rápida, precisa y barata
 - Notar la distinción entre
 - Precisa: los valores medidos son reproducibles y proporcionalmente relacionados a los valores verdaderos
 - Exacta: los valores medidos y verdaderos coinciden
- Los valores son de fácil interpretación y relativamente bien entendidos
- Relacionado en términos amplios con disponibilidad de elementos necesarios o tóxicos para las plantas

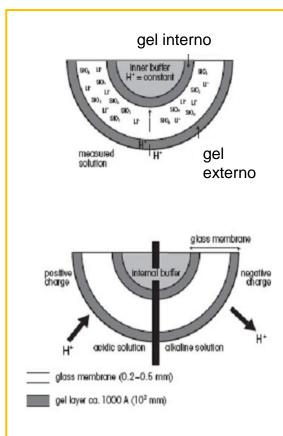
Escala del pH

pH del suelo		Acidez/basicidad comparadas con pH 7.0
9.0	básico	100
8.0	básico	10
7.0	neutro	
6.0	ácido	10
5.0	ácido	100
4.0	ácido	1000

Medición de la acidez del suelo

- □ pH
 - Con papel indicador
 - Rápido en el campo
 - Con medidor de pH
 - En agua
 - En sal
 - 1 M KCI
 - 0.01 M CaCl₂

Medidores de pH en laboratorio



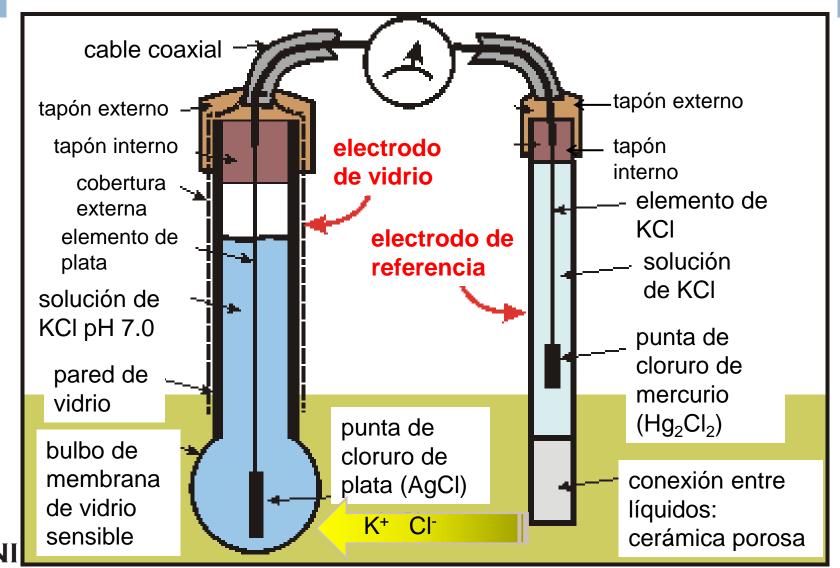
Esquema de un electrodo de vidrio

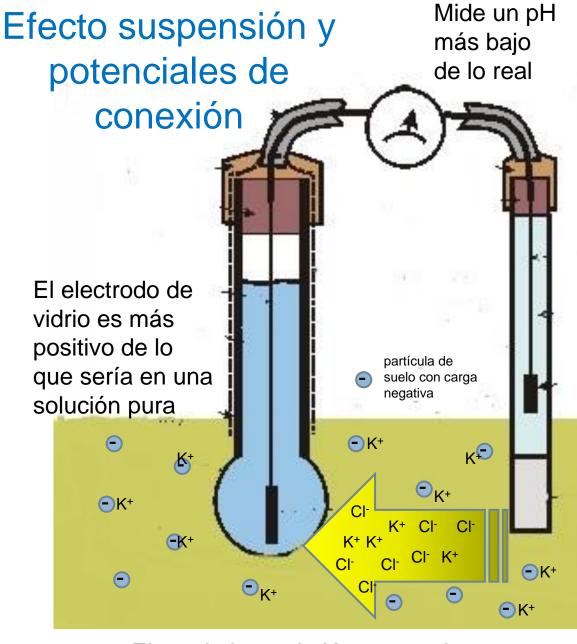
cables al medidor de pH mantener a nivel máximo entrada de aire gel layer nivel del líquido de I* = constant la solución de referencia externa solución acuosa externa saturada con AgCl y KCl pasta de AgCl con alambre de Ag abertura porosa que negative permite un drenaje lento del electrolito acidic solution alkaline solution fuera del electrodo lass membrane (0.2-0.5 mm) gel layer ca. 1000 A (102 mm) membrana de vidrio solución interna 0.1 M HCl, saturada con KCl

Hidratación del gel

- La capacidad de respuesta del electrodo depende de la hidratación del gel
- Acondicionar electrodos nuevos
- Mantener bulbos húmedos

Factores que afectan la medición de pH de suelos con electrodo


- Efecto suspensión y potenciales de conexión entre líquidos
- Sales solubles

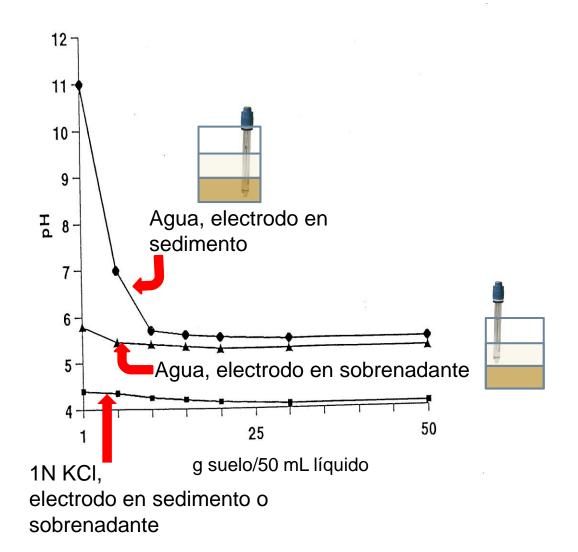

Esquema de un electrodo de vidrio

cables al medidor de pH mantener a nivel máximo entrada de aire gel layer nivel del líquido de I* = constant la solución de referencia externa solución acuosa externa saturada con AgCl y KCl pasta de AgCl con alambre de Ag abertura porosa que negative permite un drenaje lento del electrolito acidic solution alkaline solution fuera del electrodo lass membrane (0.2-0.5 mm) gel layer ca. 1000 A (102 mm) membrana de vidrio solución interna 0.1 M HCl, saturada con KCl

Electrodos para medir pH

El efecto del potencial de conexión entre líquidos surge de la diferencia en la composición entre las soluciones involucradas:

- Solución dentro del electrodo de referencia
- 2. Solución usada para la calibración
- 3. Solución problema


El potencial generado en la conexión entre líquidos cuando se calibra el electrodo no es igual al que se genera con la solución problema.

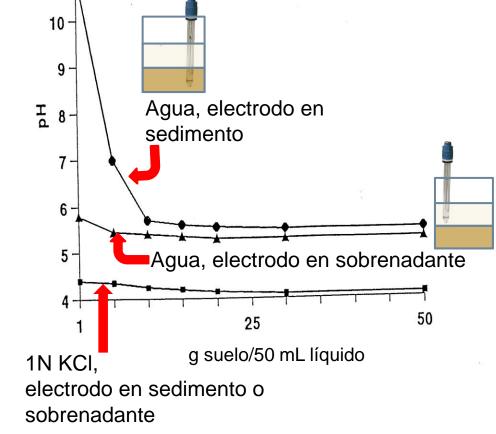
Las diferencias en movilidades entre los iones involucrados determinan un transporte de carga eléctrica en forma desigual a través de la conexión.

El movimiento de K⁺ se retarda en comparación con el de Cl⁻ debido a la atracción electrostática de los coloides del suelo

Efecto suspensión

Importancia

 Efecto suspensión es más serio en suelos muy arenosos o muy lixiviados que mantienen una solución de baja concentración de electrolitos

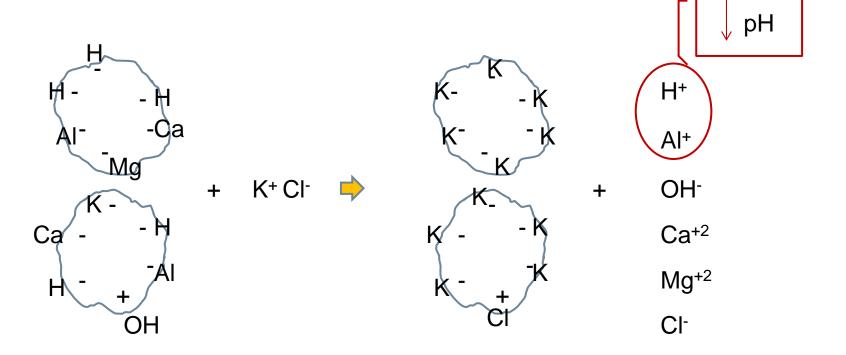


Efecto suspensión se puede reducir...

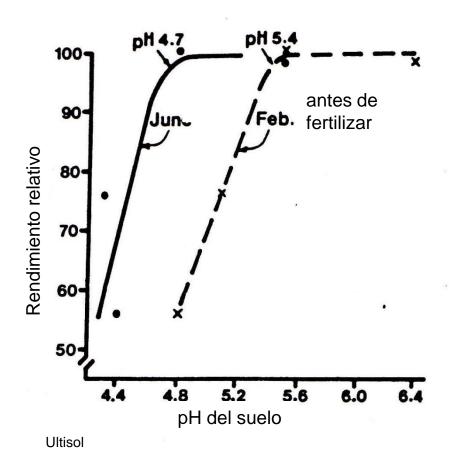
12 -

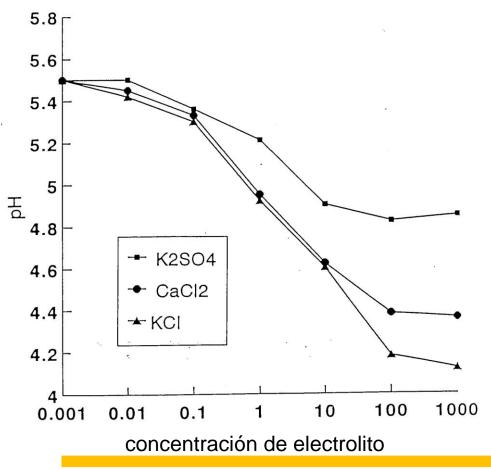
11.

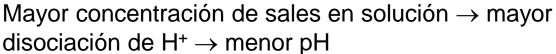
- Colocando siempre el electrodo en el líquido sobrenadante
- Usando una solución salina (1N KCl o 0.01M CaCl₂) en vez de agua
- Usando relaciones suelo:solución bajas (1:1 o 1:2)

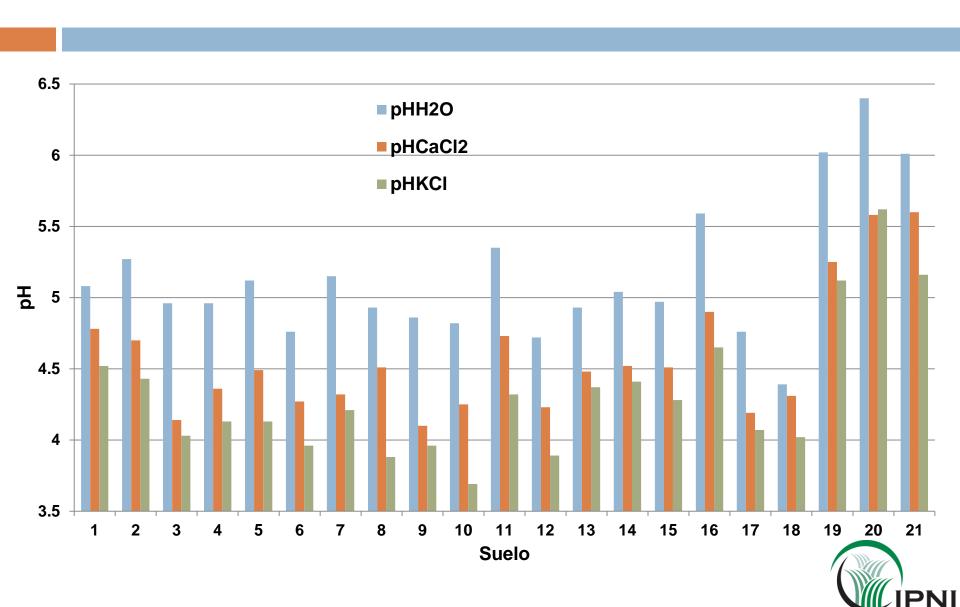

Disminuir problemas con altos potenciales de conexión entre líquidos

 No revolver la suspensión de suelo mientras se mide el pH



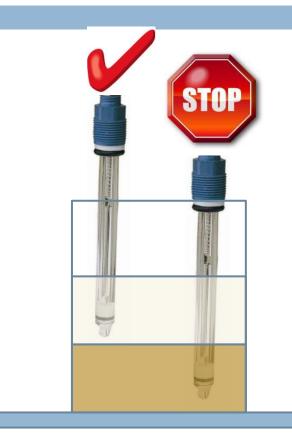

Suelo con cargas negativas





- El efecto de la variable y desconocida presencia de sales en el suelo se puede evitar midiendo el pH en una solución salina (0.01M CaCl₂ o 1M KCl)
 - La solución 0.01M CaCl2 fue propuesta por su concentración similar a la solución de suelos fértiles
- pH en 0.01M CaCl₂ menor que en agua
 - □ ~ 0.5 unidades
- pH en 0.1M KCl menor que en agua y 0.01M CaCl₂

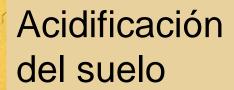
pH medido en suspensión de suelo con electrodo de vidrio

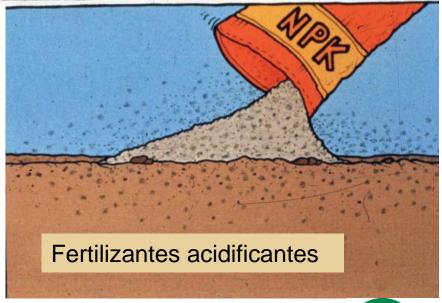

- No tiene significado químico en términos de una medición de la actividad de H+ en el suelo
- Sirve como *índice* de la intensidad de
 la acidez o
 alcalinidad del suelo

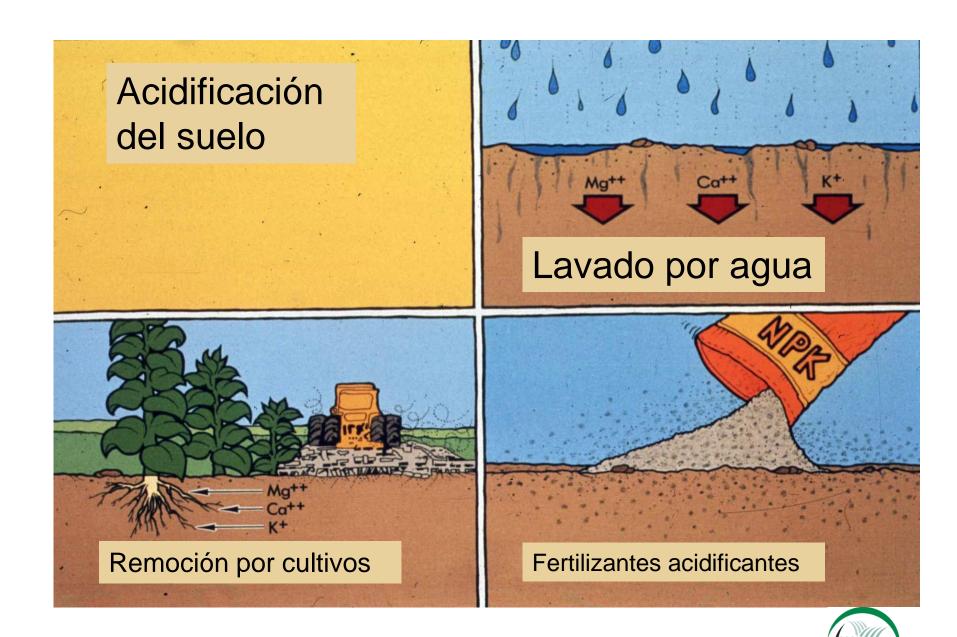
¿Qué hacer?

- Poner el electrodo en el sobrenadante, no en el sedimento
- Medir pH en soluciones de sales
 - 0.01M CaCl₂
- Usar relaciones suelo:agua lo más estrechas posibles
 - □ 1:1 ó 1:2

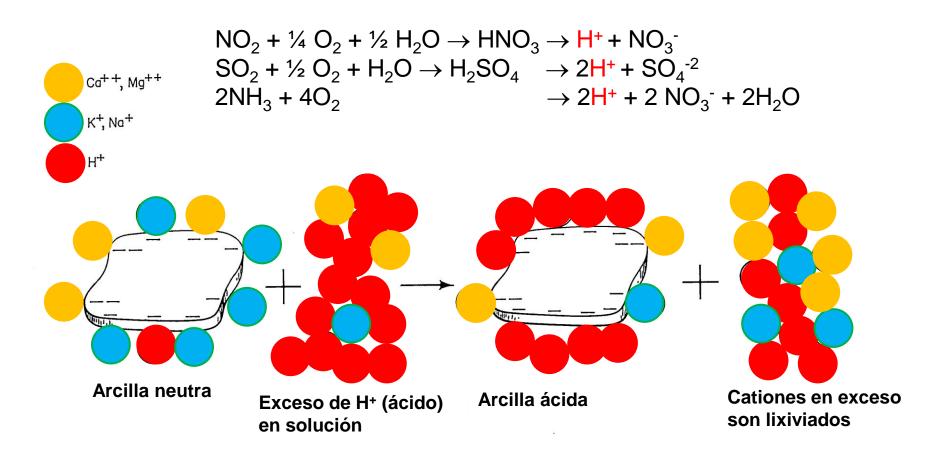
Causas de la Acidificación del Suelo


Acidificación del suelo


Acidificación del suelo



¿pH del agua de lluvia?


- Agua destilada en equilibrio con 0.03% CO₂
 en la atmósfera tiene pH ~ 5.7
- Lluvia ácida
 - natural
 - originada por contaminantes

Lavado de bases

$$CO_2 + H_2O \longleftrightarrow H^+ + HCO_3^-$$

Remoción de bases en cosechas y residuos

bases intercambiables

acidez en raíces

Cultivo-(Ca, Mg, K, Na) + Suelo-H+

cationes removidos en las partes cosechadas o residuos

acidez en el suelo

Utilización de fertilizantes acidificantes

$$SO_4^{-2}, 2NO_3^{-}, 2Cl^{-}, 2H_2PO_4^{-}, HPO_4^{-2}$$

$$2NH_4^{+} + X^{-2} + 4O_2^{Nitrosomonas} \xrightarrow{Nitrosomonas} 2H^{+} + X^{-2} + 2H^{+} + 2NO_3^{-} + 2H_2O$$

$$acido X \qquad acido nítrico$$

$$Amoníaco anhidro \qquad Nitrosomonas \\ Nitrosomonas \\ Nitrobacter \qquad 2NH_3^{-} + 4O_2 \rightarrow 2H^{+} + 2NO_3^{-} + 2H_2O$$

ureasa Nitrosomonas Nitrobacter
$$CO(NH_2)_2 + H_2O \rightarrow 2NH_3 + CO_2 + 4O_2 \rightarrow 2H^+ + 2NO_3^- + 2H_2O$$

Fertilizantes nitrogenados

La acidificación depende de
 Fuente de N

Tabla 1. Cantidades de CaCO₃ puro requeridas para neutra de N amoniacales como consecuencia de una nitrificación

Si aplicamos 200 kg N/ha/año usando urea necesitaríamos <u>MÁXIMO</u> 714 kg/ha/año de CaCO₃ puro para neutralizar la acidez creada...si usáramos sulfato de amonio, necesitaríamos 1,428 kg/ha/año

	Acidez	CaCO ₃ puro requerido para una neutralización completa			
	producida				
Fertilizante	(mol H⁺/mol N)	kg/kg N amoniacal	kg/kg fertilizante		
	1	3.57	2.92		
Amoníaco anhidro (NH₃)					
	1	3.57	1.64		
Urea (NH₂)₂CO					
	1	3.57	0.57		
Nitrato de amonio (NH ₄ NO ₃)					
	2	7.14	1.5		
Sulfato de amonio (NH ₄) ₂ SO ₄					
Fosfato monoamónico	2	7.14	0.78		
(NH ₄)H ₂ PO ₄					
Fosfato diamónico	2	7.14	1.29		
(NH ₄) ₂ HPO ₄					

¿Qué pasa con el nitrato (NO₃-)?

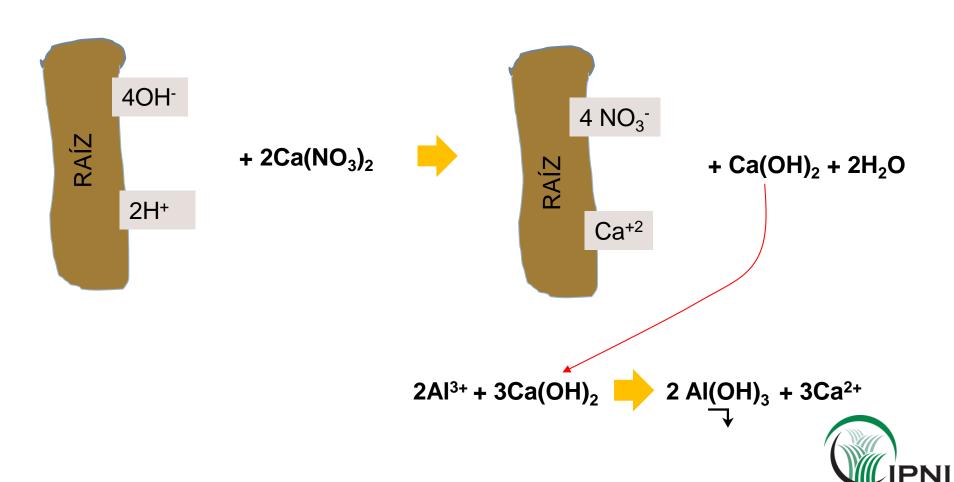
- \Box H⁺ + NO₃⁻
 - NO₃ tomado por las raíces
 - Raíces-OH + NO₃⁻ → Raíces-NO₃ + OH⁻

¿Qué pasa con el nitrato (NO₃-)?

□ NO₃⁻ no tomado por las raíces en capa arable

2HNO₃ + coloides - (Ca, Mg, 2K, 2Na)
$$\rightarrow$$
ác. nítrico cationes básicos intercambiables coloides - (2H) + (Ca, Mg, 2K, 2Na)(NO₃)₂

suelo ácido


sales solubles lavadas

Reacción más importante en la acidificación de suelos

¿Qué pasa con el nitrato (NO₃-)?

NO₃- tomado por las raíces en subsuelo

¿Qué pasa con otras formas de N?

- NH₄+ tomado por las raíces
 - □ Raíces-H + NH₄⁺ → Raíces-NH₄ + H⁺
- N₂ tomado por las raíces (leguminosas)
 - □ Raíces-H + bases⁺ⁿ → Raíces-bases + H⁺

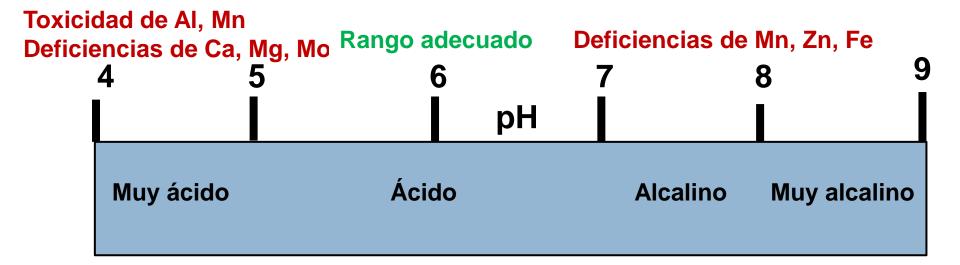
Conclusiones

- Ajustar la aplicación de N a las necesidades del cultivo
- Promover crecimiento de raíces para tomar el NO₃-
- Mantener el pH en capa arable entre 5.5 y 5.8, para retardar la nitrificación, sin afectar al cultivo
- No remover los residuos, sino dejarlos en el suelo

Desnitrificación

- Reacciones en reversa a la nitrificación
- Se consume H⁺(disminuye acidez)

$$NO_3^- \rightarrow NO_2^- \rightarrow NO + N_2O \rightarrow N_2$$
 (g)


$$2 \text{ NO}_3^- + 10 \text{ e}^- + 12 \text{ H}^+ \rightarrow \text{N}_2 \text{ (g)} + 6 \text{ H}_2\text{O}$$

Consecuencias de la Acidificación del Suelo

Disponibilidad de nutrientes

Severo desequilibrio químico

Toxicidad

Deficiencias

AI

Mn

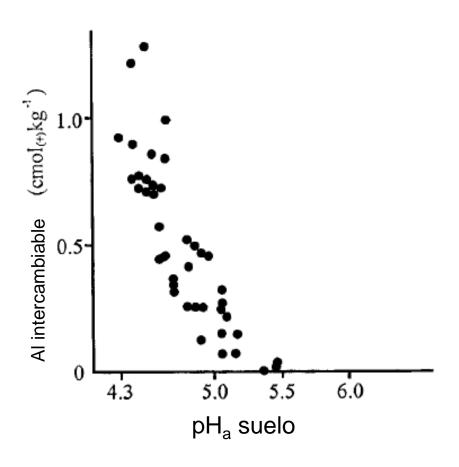
P

K

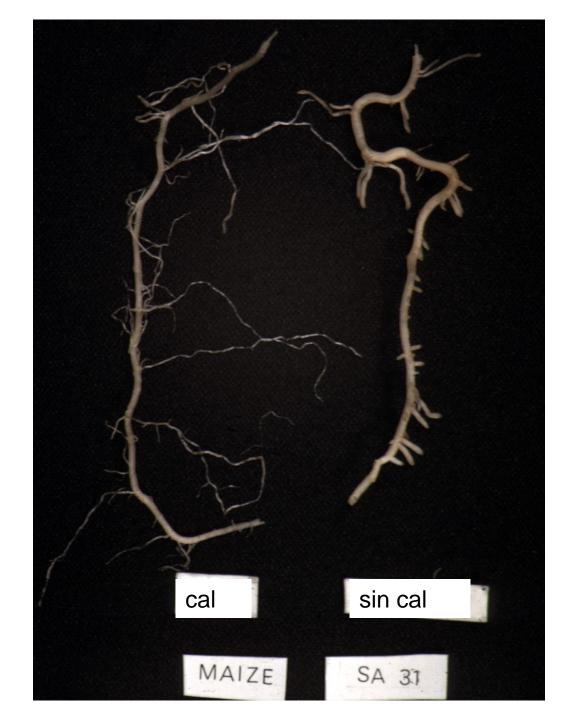
Ca

Mg

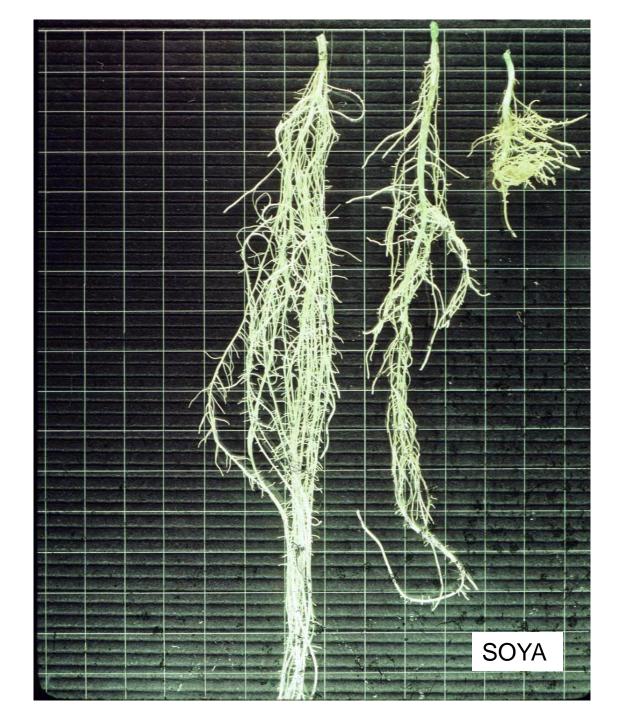
Mo

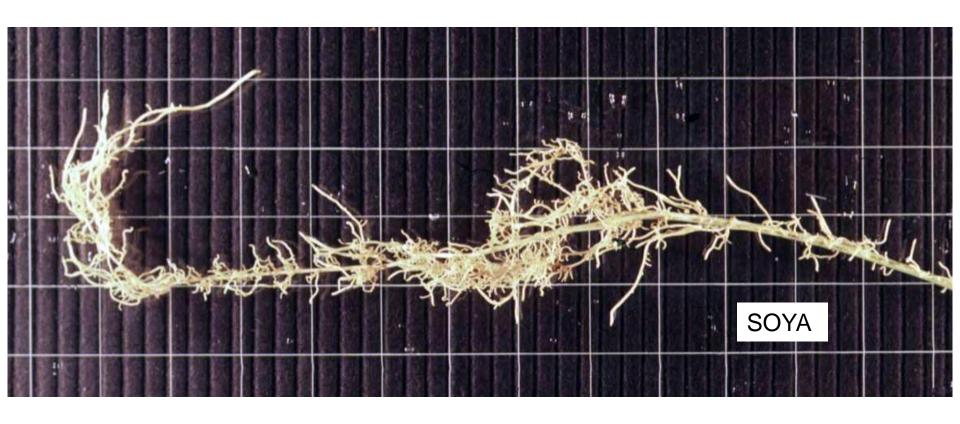

Requisitos para un buen crecimiento de raíces

- □ Ausencia de Al³+ soluble
- Niveles altos de Ca²⁺ soluble


Aluminio intercambiable

$$AI(OH)_3 + 3H^+ \rightarrow AI^{3+} + 3H_2O$$





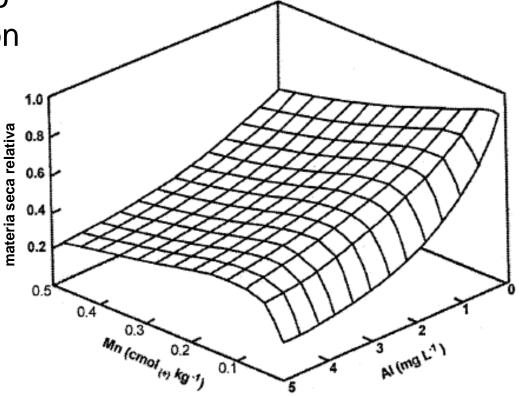
Toxicidad de Manganeso

$$MnO_{2 (s)}$$
 + 2H⁺ \rightarrow Mn^{++} + H₂O + 1/2O₂ dióxido de manganeso soluble

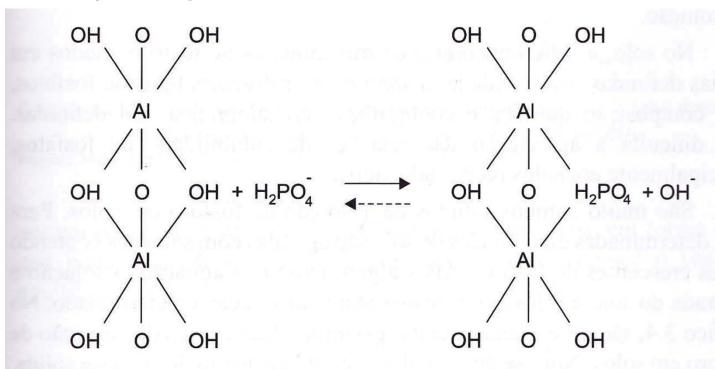
- Condiciones reductoras (falta de O₂)
 promueven toxicidad de Mn
 - exceso de agua
- Síntomas aparecen primero y son más severos en hojas viejas

Toxicidad de Mn en maíz

Síntomas pueden extenderse a hojas jóvenes


Con toxicidad persistente los márgenes y puntas de las hojas viejas toman colores grisoscuro y café.

La nervadura central y el tejido que la rodea cambia a un color plateado.

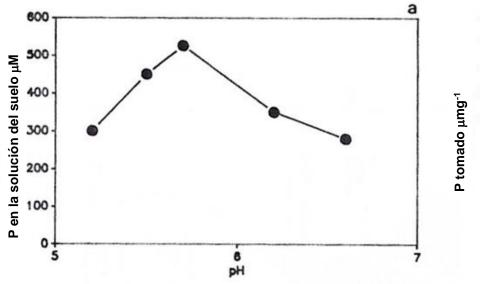

Rendimiento de materia seca relativo de cebada en función del AI y Mn intercambiables (0.01M CaCl₂) para 19 suelos ácidos

australianos

- Bajo contenido natural
- Baja disponibilidad

Esquema 3.4. Representação da adsorção de fosfato em superfície de óxido hidratado de alumínio. (Von Raij, 2011)

pH bajo


suelo-Fe(OH)_{2(s)} + H⁺ +


$$H_2PO_4^- \rightleftharpoons$$

sueloFePO₄•2H₂O_(s) + H₂O

pH alto

$$5Ca^{+2} + 3H_2PO_4^- + H_2O \rightleftharpoons Ca_5(PO_4)_3OH_{(s)} + 7H^+$$

Efecto del pH en la concentración de P en solución

Efecto del pH en la toma de P por alfalfa, *Desmodium*, y sorgo

Deficiencia de K en maíz

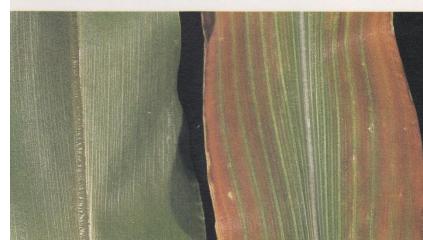
Hojas viejas

Deficiencia de Ca en maíz

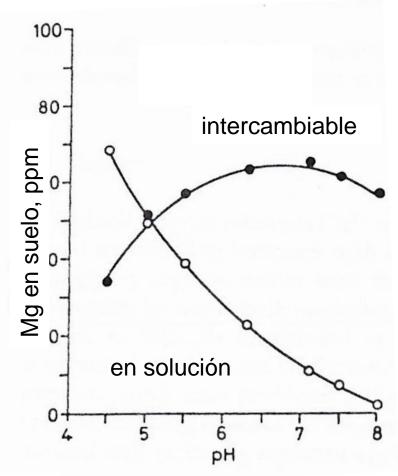
- Hojas nuevas
- •Hojas pálidas a verde oscuro con lesiones amarillas y cafés; hoja rota o con agujeros; a veces se presenta necrosis en la punta de la hoja

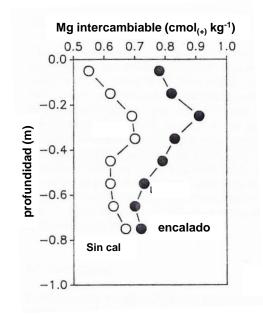
Ca intercambiable en suelo


	Contenido de calcio en el suelo (ppm)								
Textura	Muy bajo	Bajo	Modera- damente bajo	Medio	Modera- damente alto	Alto	Muy alto		
Fina	<500	500-750	750- 1000	1500- 3000	3000- 5000	5000- 6000	>6000		
Media	<400	400-600	600- 1000	1000- 2000	2000- 3500	3500- 5000	>5000		
Gruesa	<300	300-500	400-800	800- 1200	1200- 1750	1750- 2500	>2500		


Extracción con acetato de amonio 1N pH7

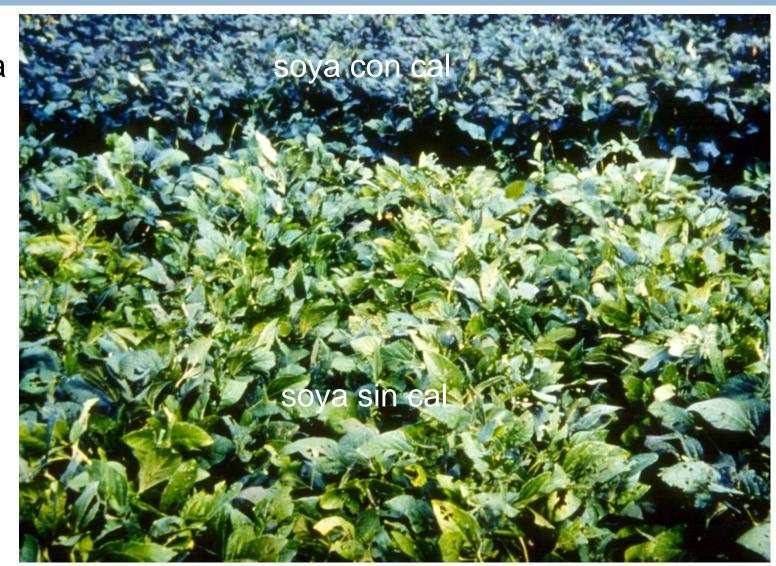
Deficiencia de Mg en maíz


- Hojas viejas
- Clorosis entre nervaduras, seguida por franjas cafés óxido y necrosis café pálida



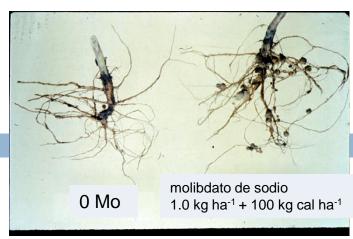
Mg intercambiable

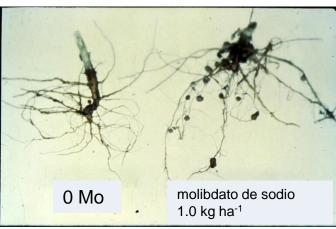
Mg⁺² no compite
 bien con Al⁺³ y Ca⁺²
 por sitios de
 intercambio

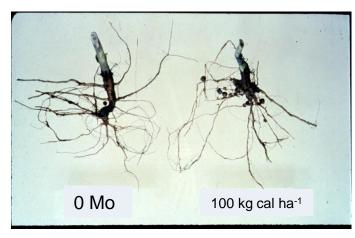

Ca y Mg

- Encalado para neutralizar Al⁺³ normalmente aporta necesidades de Ca y Mg
- Necesidades adicionales solventables con yeso y/o kieserita (MgSO₄·H₂O)

Deficiencia de molibdeno

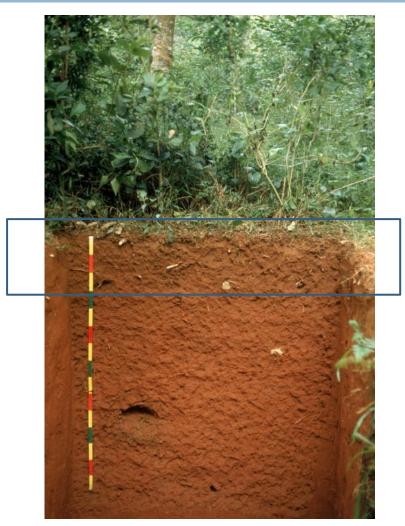

Deficiencia de Mo induce deficiencia de N





Nodulación

- Mo esencial para fijación simbiótica en leguminosas
- Disponibilidad de Mo en suelo depende de:
 - Contenido de Mo en suelo
 - pH
 - Adsorción de MoO₄²⁻ por hidróxidos de Fe y Al

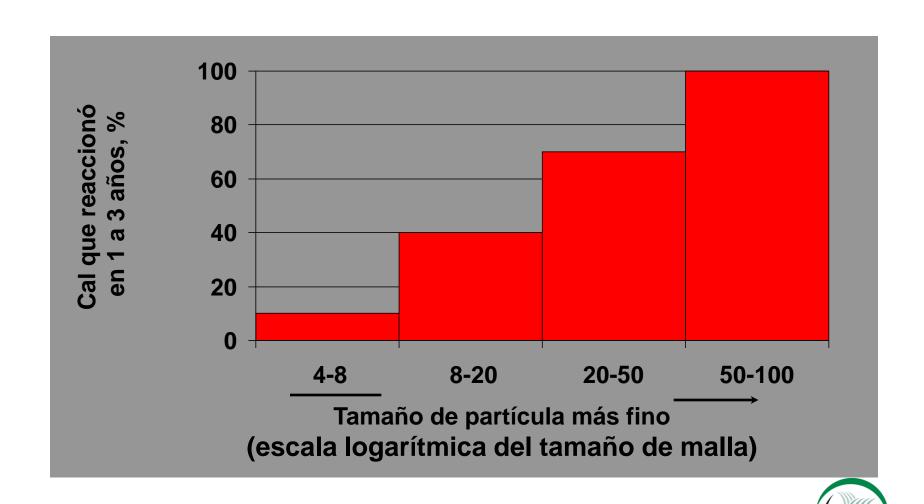


Corrección de la acidez

Acidez superficial

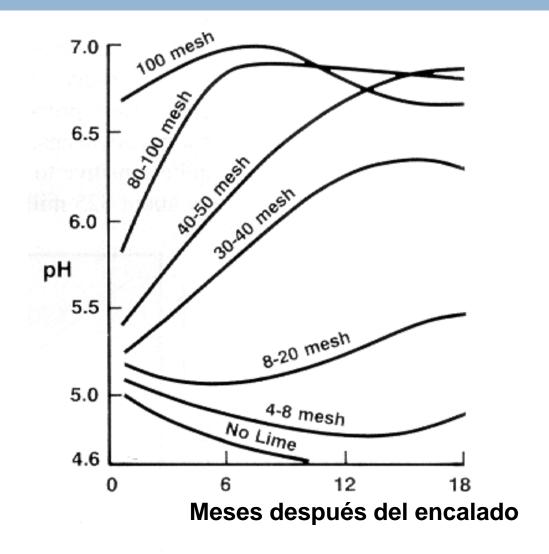
Encalado

Encalado


- Materiales para el encalado
 - Óxido de calcio (CaO)
 - Hidróxido de calcio [Ca(OH)₂]
 - Cal agrícola o calcita (CaCO₃)
 - Dolomita (Ca,MgCO₃)
- Calidad de los materiales de encalado
 - Pureza química
 - Tamaño de partícula
 - Poder Relativo de Neutralización Total (PRNT)

Equivalente Químico

		Conter	nido de
Material	Equivalente Químico (EQ)	Ca	Mg
	Quillioo (EQ)	%	
Carbonato de calcio	100	40	
Dolomita	108	21.6	13.1
Óxido de calcio	179	71	
Hidróxido de calcio	138	54	
Hidróxido de magnesio	172		41
Carbonato de magnesio	119		28.5
Óxido de magnesio	248		60


El tamaño de las partículas determina la reactividad

Eficiencia granulométrica (EG)

Número de malla	Composición de cal	Eficiencia relativa	Eficiencia granulométrica (EG)
		%	
< 8	5	0	0
8-20	15	20	3
20-40	30	40	12
40-60	20	60	12
>60	30	100	30
		Total	57

Efecto de la eficiencia granulométrica

Poder Relativo de Neutralización (PRNT)

$PRNT = (EG \times EQ)/100$

Procedencia	Material	CaCO ₃	$MgCO_3$	Ca	Mg	EG	EQ	PRNT
					70			
Turrialba	Calcita	99.2	0.8	39.7	0.2	99.9	100.0	99.9
Nicoya	Calcita	95.5	0.8	38.2	0.2	99.9	96.2	96.1
Patarrá	Calcita	82.0	0.8	32.8	0.2	98.3	82.8	81.4
Esparza	Calcita	97.3	1.3	38.9	0.3	60.0	98.3	59.0
Coto Brus	Calcita	88.3	0.8	35.3	0.2	62.7	89.1	55.9
Honduras	Dolomita	62.8	42.5	25.1	10.2	96.6	105.3	101.7
Belize	Dolomita	54.5	44.4	21.8	12.8	93.0	107.3	99.8
Guatemala	Dolomita	55.7	48.3	22.3	11.6	82.6	103.7	85.7
Patarrá	Cal+Magox	75.5	31.2	30.2	7.5	92.6	106.7	98.8

Método de aplicación de la cal

Tabla 7. Efecto del método de aplicación de dolomita en el rendimiento de maíz en Oxisoles de Colombia (Adaptado de León, 1998).

Método de aplicación	Reno	dimiento (k	g/ha)
	Sikuani*	Tuxpeño	CIM. 33 SA8
Voleo e incorporado**	4190	3447	3200
Banda	1653	1418	603
+ 3 / / · 1 1 CY3 / D / CY7			

^{*} Materiales de CIMMYT

^{**} Dosis de dolomita = 3.5 t/ha

Época de aplicación de la cal

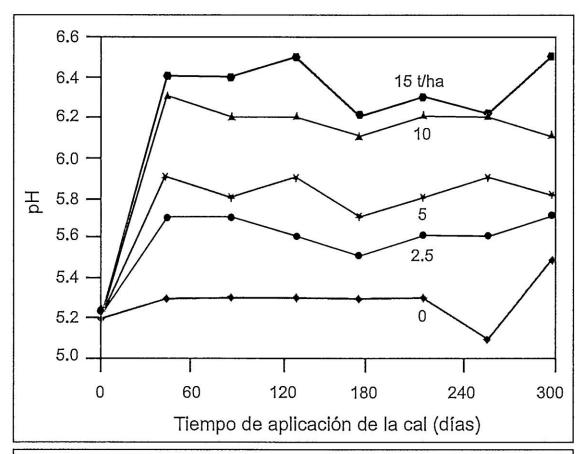
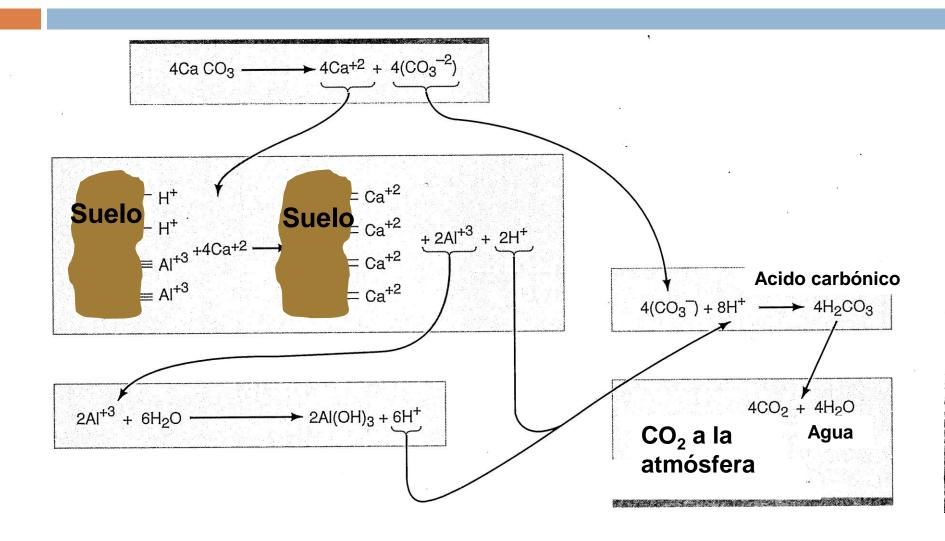



Figura 2. Velocidad de reacción de la cal a diferentes dosis de aplicación en un Andisol de Ecuador.

Reacciones de la cal en el suelo

¿Cuánta cal aplicar?

- Suelo
- Calidad de la cal
- Especie y cultivar
- Análisis económico

Criterios para determinar las necesidades de cal

Criterios dominantes

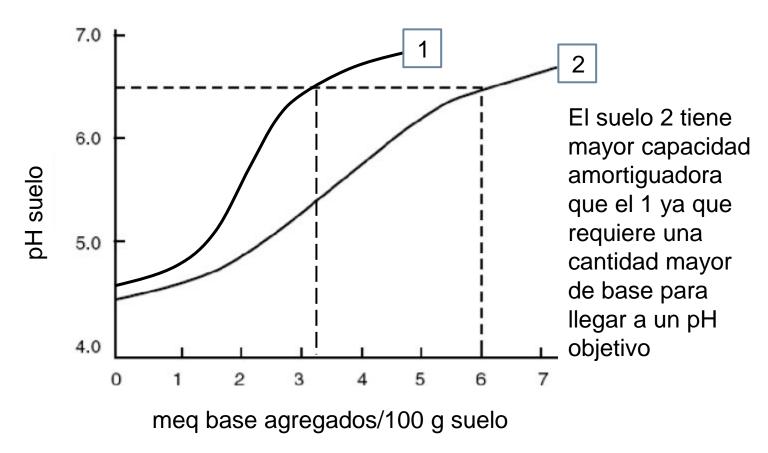
- Llevar al suelo a un pH específico
 - Se usa la información obtenida con soluciones amortiguadoras (también denominadas "búfer" o tampón)
- Eliminar las limitaciones para los cultivos
 - Toxicidades de Al y/o Mn
 - Deficiencias de Ca y/o Mg

Desarrollo histórico de los criterios

- Países donde se inición el desarrollo de la química agrícola (Inglaterra, Alemania, Francia, región central de EE.UU.) con suelos fértiles y con pH alrededor de la neutralidad
- ¿Cuál era el razonamiento?
 - Los problemas con la baja fertilidad de los suelos ácidos – con pH bajo – se solucionarían subiendo el pH a los valores de los suelos que no tienen tales problemas
 - Es fácil medir el pH

Para determinar el requerimiento de cal del suelo en base al pH debemos saber:

- ¿Cuál es el pH objetivo del suelo?
- ¿Cuánta cal hay que aplicar para llegar a ese pH?



¿Cuánta cal hay que aplicar?

- La cantidad de cal necesaria para cambiar el pH una unidad depende del suelo
- Titulación parcial con CaCO₃
 - Se agregan al suelo diferentes cantidades de CaCO₃ puro en partículas muy finas
 - Se agrega agua
 - Se deja reaccionar a temperatura ambiente (= Incubación)
 - ¿Semanas?
 - Se mide evolución del pH y se obtiene una curva estándar

Capacidad amortiguadora varía con los suelos

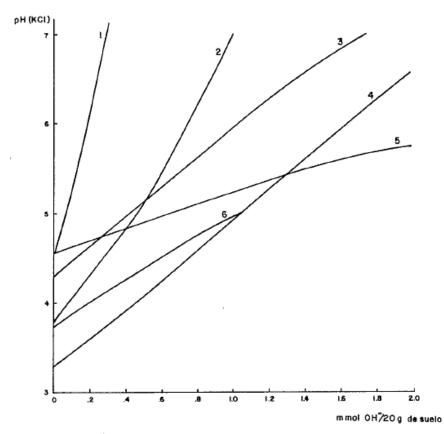


Figura 10. Curvas de titulación de varios suelos.

- Cambisol dystrico (FAO), ubicado en una colina en terrenos de la escuela CBTA de Juan Rodríguez Clara, Veracruz, México; 81 % arena, 12 % limo, 7 % arcilla; pH (H₂O) 5.2; 1.15 % de materia orgánica; CIC de 2.7 meg/100 g.
- 2. Feozem háplico (FAO), ubicado en Ahualulco, Jalisco, México; 66 % arena, 25 % limo, 9 % arcilla; pH (H₂O) 4.5; 1 % de materia orgánica; CIC de 3.9 meg/100 g.
- Plintic palehumult (USDA), serie Huapacal, Sabana de Huimanguillo, Tabasco, México; 9.3 % arcilla, pH (H₂O) 5.4;
 4.64 % de materia orgánica; CIC de 4.05 meg/100 g.
- Suelo tipo loess de una región forestal cerca de Doesburg, Gelderland, Holanda, pH (H₂O) 4.1; 8 % de materia orgánica; CIC de 12 meg/100 g.
- Plintic palehumult (USDA): serie Rosario, Sabana de Huimanguillo, Tabasco, México; 16 % de arcilla; pH (H₂O) 5.3;
 8 % de materia orgánica; CIC de 5.5 meg/100 g.
- 6. Cambisol úmbrico (FAO). Ejido Los Tigres, Rodríguez Clara, Veracruz, México; 40 % arena, 25 % limo, 35 % arcilla; pH (H₂O) 4.0; 3.7 % de materia orgánica; CIC de 18.4 meg/100 g.

Ventajas y desventajas de las titulaciones

Aspectos positivos

- Las incubaciones dan información muy importante sobre la capacidad amortiguadora de los suelos
- Los resultados de las incubaciones se usan como referencias para calibrar otros métodos

Aspectos negativos

- Requieren mucho tiempo
- La reacción entre la base y el suelo no llega a un equilibrio

Incubaciones vs. campo

 Determinaciones en laboratorio subestiman los requerimientos de cal determinados en campo

Alternativa: Uso de soluciones amortiguadoras (también conocidas como soluciones "búfer" o "tampón")

- Un volumen conocido de una solución amortiguadora se equilibra con un peso o volumen fijo de suelo
- Se mide el pH de la mezcla suelo-solución amortiguadora
- La disminución en el pH de la solución amortiguadora – después de mezclarla con el suelo – es una medida de la acidez del suelo que debe ser neutralizada con una base para llegar a un pH determinado

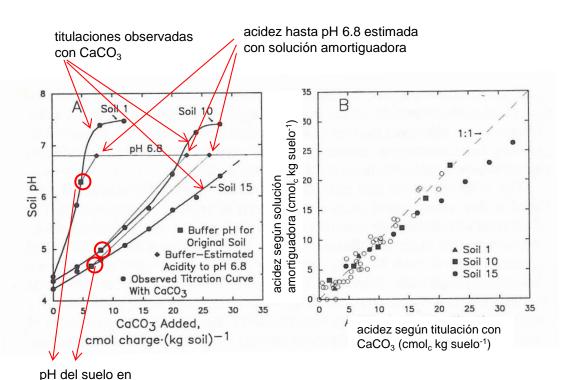
Uso de soluciones amortiguadoras

- Rápido y económico
- Ejemplo con solución Adams-Evans (pH 8.0)

	pH suelo en solución amortiguadora								
pH suelo en agua	7.9	7.80	7.70	7.60	7.50	7.40	7.30		
6.3	183	366	5 49	732	915	1098	1281		
6.1	324	648	972	1295	1619	1943	2267		
5.9	436	872	1308	1744	2180	2616	3052		
57	528	1056	11/64	2112	2641	3169	3697		
(5.5)	605	1211	1816	2422	3027	3633	4238		
5.3	672	1344	2016	2689	3361	4033	4705		
5.1	731	1462	2193	2924	3655	4386	5117		
4.9	785	1569	23 <mark>54</mark>	3138	3923	4707	5492		
4.7	836	1672	2507	3343	4179	5015	5850		

libras acre⁻¹ (\sim 2,000 kg ha⁻¹) de cal a aplicar en 2,000,000 libras (\sim 908 t) de suelo

Métodos basados en soluciones amortiguadoras


método	pH de solución amortiguadora	Tipos de suelos para los que fueron desarrollados
Adams y Evans	8.0	Ultisoles de baja CIC
Mehlich	6.6	Ultisoles de baja CIC
SMP	7.5	Alfisoles requerimiento de cal > 4.5 t ha ⁻¹ pH<5.8 MO<10%

Calibraciones necesarias

 Comparar estimaciones basadas en soluciones amortiguadoras y CaCO₃

solución amortiguadora

Evaluar recomendaciones en el campo

Limitaciones de las soluciones amortiguadoras

- Miden una proporción de la acidez medida con CaCO₃
- Tal proporción varía entre las soluciones usadas

Limitaciones de las soluciones amortiguadoras

- Originalmente no fueron calibradas con estudios de campo
- Las calibraciones de los estudios de incubación han sido adoptadas y se aplican en condiciones muy distintas de las originales
- Se requieren calibraciones locales

Solución SMP (Shoemaker-McLean-Pratt) - Brasil

Tabela 8.1. Determinação da necessidade de calagem para três valores de pH de solo em água e de H + Al³, com base no pH da suspensão de solo na solução tampão SMP.

	S	an Pablo		pН	Río	Grande o	del Sur	H + Al ³⁺	
pH _{SMP}	6,5 (SP) ¹	6,0 (SP)	5,5 (SP)		6,5 (RS) ²	6,0 (RS)	5,5 (RS)	(mmol /dm³)	
		Necessidade de calagem (CaCO ₃ – t/ha x 20 cm)							
6,9	0,4						. 8 4 E W 1	16	
6,8	0,8							18	
6,7	1,2	0,3						20	
6,6	1,5	0,5						22	
6,5	2,0	0,7	0,1		0,7	0,2		25	
6,4	2,3	0,9	0,2		1,5	0,6		28	
6,3	2,8	1,1	0,3		2,1	1,2	0,2	31	
6,2	3,3	1,4	0,5	-	2,7	1,7	0,6	34	
6,1	3,8	1,8	0,7		3,4	2,2	1,0	38	
6,0	4,5	2,2	0,9		4,1	2,8	1,4	42	
5,9	5,2	2,7	1,1		4,8	3,3	1,9	47	
5,8	6,1	3,2	1,4		5,5	3,9	2,3	52	
5,7	6,9	3,8	1,7	2.01	6,2	4,5	2,8	58	
5,6	7,9	4,4	2,0		7,0	5,1	3,3	64	
5,5	8,9	5,1	2,4		7,9	5,8	3,8	72	
5,4	10,1	5,8	2,8	200	8,7	6,5	4,4	80	
5,3	11,2	6,7	3,2	3	9,6	7,2	4,9	88	
5,2	12,5	7,6	3,7	S. S.	10,6	8,0	5,5	98	
5,1	13.8	8.5	4,4		11,7	8.8	6.2	109	
5,0	15,3	9,5	5,0	2	12,9	9,7	6,9	121	
4,9	16,7	10,5	5,5		14,2	10.7	7,7	135	
4,8	18.3	11.6	6,1		15.7	11,9	8,5	150	

Fonte: ¹Raij, Cantarella e Zullo (1979); ²Siqueira e outros (1987); ³Quaggio, Raij e Malavolta (1985, tradução nossa).

Solución SMP (Shoemaker-McLean-Pratt) - EEUU

Table 5-1. Relationships between soil-SMP-buffer pH and lime requirement (LR) values to achieve pH 5.5, 6.0, 6.5, and 7.0 of mineral soils.

Soil-buffer		L	R†	
pH	pH 5.5	pH 6.0	pH 6.5	pH 7.0
6.9	0.5	0.6	0.7	0.9
6.8	0.6	1.0	1.2	1.5
6.7	0.7	1.4	1.8	2.2
6.6	0.9	1.8	2.5	2.8
6.5	1.2	2.3	3.3	3.6
6.4	1.6	2.9	4.0	4.4
6.3	2.0	3.5	4.9	5.2
6.2	2.5	4.2	5.7	6.0
6.1	3.1	4.9	6.6	7.0
6.0	3.8	5.6	7.5	8.0
5.9	4.5	6.5	8.5	9.0
5.8	5.3	7.3	9.5	10.0
5.7	6.1	8.2	10.5	11.2
5.6	7.0	9.2	11.6	12.4
5.5	8.0	10.2	12.7	13.6
5.4	9.1	11.3	14.0	14.9
5.3	10.2	12.4	15.0	16.2
5.2	11.4	13.6	16.2	17.6
5.1	12.7	14.8	17.5	19.0
5.0	14.0	16.1	18.8	20.4
4.9	15.5	17.4	20.1	22.0

[†] Lime requirement in metric tonnes CaCO₃ ha⁻¹ for a furrow layer of 20-cm depth (2 million L) soil.

Table 5-1. Relationships between soil-SMP-buffer pH and lime requirement (LR) values to achieve pH 5.5, 6.0, 6.5, and 7.0 of mineral soils.

Soil-buffer		L	R†	
pH	pH 5.5	pH 6.0	pH 6.5	pH 7.0
6.9	0.5	0.6	0.7	0.9
6.8	0.6	1.0	1.2	1.5
6.7	0.7	1.4	1.8	2.2
6.6	0.9	1.8	2.5	2.8
6.5	1.2	2.3	3.3	3.6
6.4	1.6	2.9	4.0	4.4
6.3	2.0	3.5	4.9	5.2
6.2	2.5	4.2	5.7	6.0
6.1	3.1	4.9	6.6	7.0
6.0	3.8	5.6	7.5	8.0
5.9	4.5	6.5	8.5	9.0
5.8	5.3	7.3	9.5	10.0
5.7	6.1	8.2	10.5	11.2
5.6	7.0	9.2	11.6	12.4
5.5	8.0	10.2	12.7	13.6
5.4	9.1	11.3	14.0	14.9
5.3	10.2	12.4	15.0	16.2
5.2	11.4	13.6	16.2	17.6
5.1	12.7	14.8	17.5	19.0
5.0	14.0	16.1	18.8	20.4
4.9	15.5	17.4	20.1	22.0

 $[\]dagger$ Lime requirement in metric tonnes CaCO $_3$ ha $^{-1}$ for a furrow layer of 20-cm depth (2 million L) soil.

72

3,8

				6.9 6.8 6.7	0.5 0.6 0.7	0.6 1.0 1.4	0.7 1.2 1.8	0.9 1.5 2.2
	terminação da ne solo na solução t		lagem pa	6.6 6.5 6.4	0.9 1.2 1.6	1.8 2.3 2.9	2.5 3.3 4.0	2.8 3.6
	S	an Pablo		6.3	2.0	3.5	4.9	4.4 5.2
pH_{SMP}	6,5 (SP) ¹	6,0 (SP)	5,5 (6.2	2.5	4.2	5.7	6.0
SIVII	*	Necessid	ade de c	6.1	3.1	4.9	6.6	7.0
6,9	0,4			6.0	3.8	5.6	7.5	8.0
6,8	0,8			5.9	4.5	6.5	8.5	9.0
6,7	1,2	0,3		5.8	5.3	7.3	9.5	10.0
6,6	1,5	0,5		5.7	6.1	8.2	10.5	11.2
6,5	2,0	0,7	0,	5.6 5.5	7.0 8.0	9.2 10.2	11.6 12.7	12.4 13.6
6,4	2,3	0,9	0,	5.4	9.1	11.3	14.0	14.9
6,3	2,8	1,1	0,	5.3	10.2	12.4	15.0	16.2
6,2	3,3	1,4	0,	5.2	11.4	13.6	16.2	17.6
6,1	3,8	1,8	0,	5.1	12.7	14.8	17.5	19.0
6,0	4,5	2,2	0,	5.0	14.0	16.1	18.8	20.4
5,9	5,2	2,7	1,	4.9	15.5	17.4	20.1	22.0
5,8	6,1	3,2	1,	† Lime requiremen	t in metric tonne	es CaCO, ha -1 for	a furrow layer	of 20-cm der

5,8

5,4 10,1 2,8 5,8 8,7 6,5 4,4 80 5,3 11,2 6,7 3,2 9,6 7,2 4,9 88 5,2 12,5 3,7 7,6 10,6 8,0 5,5 98 5.1 13.8 8.5 4.4 11.7 8.8 62 109

7,9

5,0 15,3 9,5 5,0 12,9 9,7 6,9 121 4,9 16,7 10.5 5,5 14,2 10.7 7,7 135 4,8 18.3 11.6 6.1 15.7 119 8,5 150

Fonte: ¹Raij, Cantarella e Zullo (1979); ²Siqueira e outros (1987); ³Quaggio, Raij e Malavolta (1985, tradução nossa).

1,

2,

2,4

5,7

5,6

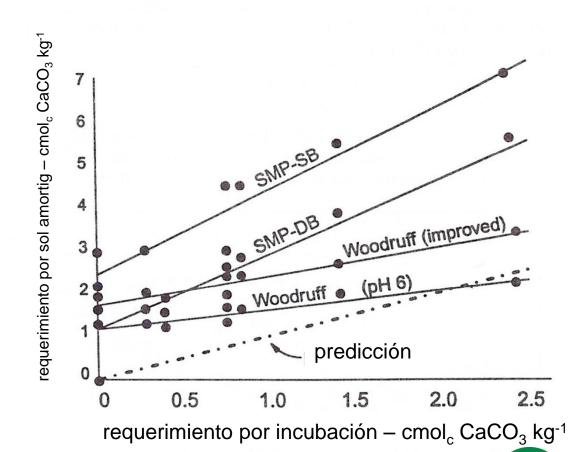
5,5

6,9

7,9

8,9

3,8


4,4

5,1

Predicciones muy pobres

- Comparación del requerimiento de cal para pH 6.0 determinado por incubación con Ca(OH)₂ con el predicho por varias soluciones amortiguadoras para suelos de Idaho (EE.UU)
- La línea de predicción representa la relación ideal entre los requerimientos determinados por ambos métodos

Resultados de evaluaciones de campo

Coeficientes de determinación (r²) para la predicción de los requerimientos de cal basados en la respuesta observada al encalado en condiciones de campo

	Coeficiente de determinación (r²)					
Procedimiento	Edmeades et al. Aitken et al. (1985) ^a (1995) ^b		Nagle (1983) ^a			
Adams-Evans	0.43		0.24			
SMP-sencillo	0.45		0.18			
SMP-doble	0.49	0.73 (0.64)	0.36			
Mehlich			0.24			
Yuan	0.21	0.71 (0.87)	0.10			

apH objetivo=6.0

^bpH objetivo=5.5 y (6.5), respectivamente

Causas de pobres resultados

- Diferencias en exactitud de calibraciones
- Discrepancias entre pH del suelo en la solución amortiguadora y el pH objetivo
- Variaciones entre las soluciones amortiguadoras en pH inicial y capacidades amortiguadoras

Causas del pobre comportamiento en el campo

- Inexactitud en la calibración de la solución amortiguadora
 - La exactitud es especialmente importante en suelos con bajas capacidades de amortiguamiento que pueden ser sobre-encalados en una sola aplicación
- 2. Aplicación de cal desuniforme
- Volumen/peso de suelo no adecuado
- Uso de factores de corrección genéricos para la calidad de la cal

Resultados del sur de Veracruz

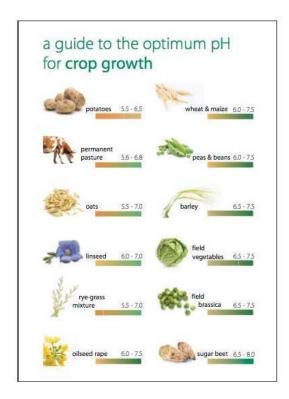
- SMP no recomendables
- Sobreestima necesidades de cal
- Problemas potenciales por sobre-encalado

entonces...

¿Cómo ha ido evolucionando el concepto de pH óptimo?

- Inicialmente pH 8.2 a 8.4
 - pH aproximado del suelo en equilibrio con cal
- 100% de CIC saturada por bases
 - Como la CIC se mide a pH 7.0, este valor se convirtió en el pH ideal
- □ pH ≈ 7.0 adecuado para sistema dependiente en leguminosas (oeste medio de EEUU)
- Desplazamiento de leguminosas por fertilizantes N sintéticos eliminó justificación del pH ≅ 7.0

Aun actualmente

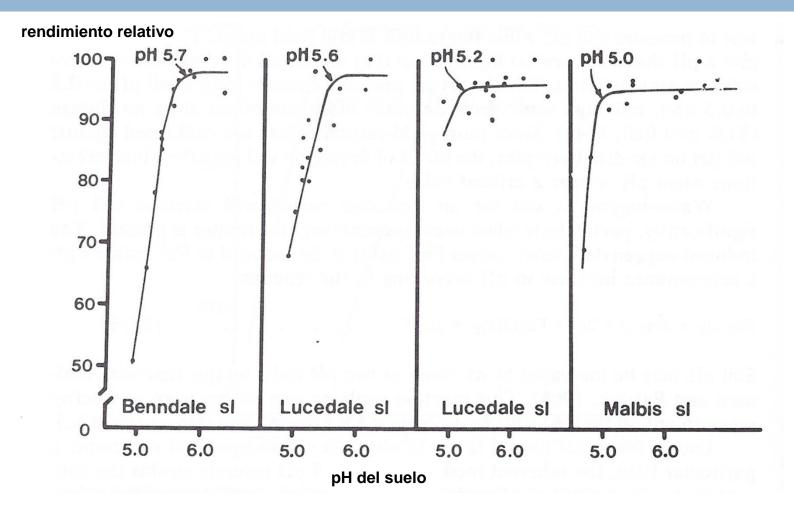

Crop requirements

pH Management + Natural Lime = Sucessful Crops

The replacement of calcium lost from the soil by leaching and crop uptake is essential to maximise production and profits from cereal crops.

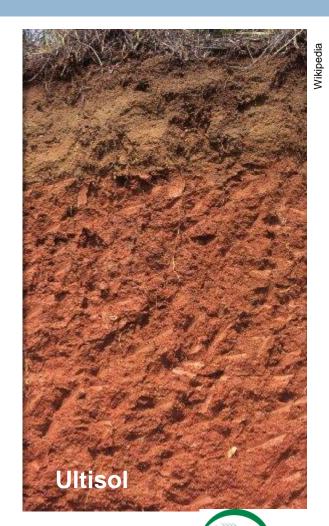
The growth of cereals of high protein content depends on stability of pH during the growing cycle; barley is an example where sensitivity to soil pH is particularly apparent. Sugar beet also takes up nutrients most effectively in soils with a pH 6.5-7.0. Increasing acidity results in stunted plants and fangy roots.

The crop requirements diagram provides a guide to the optimum pH levels for some important crops. If soil pH is lower than the bottom of the indicated range, then crop yields will begin to suffer severely due to the crops' inability to to lerate that level of acidity. Those crops which are tolerant to acidity would be more profitable at higher pH values. At a pH of 4.9 one is not getting as good a response from the fertilisers applied to maximise the potato crop as at the optimum pH. Limealso aids soil fertility in grassland and ensures that added fertilisers are utilised to maximum effectiveness and helps to increase crop yield either as hay, silage, or grazing. It is particularly important to adjust soil pH well in advance for sensitive crops such as oil seed rape, sugar beet, barley and peas. Spreading should be even, accurate, and cause little disruption to the soil structure.


pH crítico

 pH mínimo por encima del cual el encalado no aumentará los rendimientos

	pH crítico					
cultivo	sur de EEUU	oeste medio de EEUU	Reino Unido			
algodón	5.0-5.7					
maíz	5.0-5.5	5.0-6.0	5.5			
soya	5.0-5.7	6.0				
trigo	5.5		5.5			
alfalfa	6.0	> 6.0	6.2			
zacate Bermuda	5.0					
sorgo	5.3-5.5					


pH crítico es variable

pH crítico del suelo para el máximo rendimiento de soya en experimentos de campo en suelos de diferentes tipos

Evolución tecnológica en otras partes del mundo

- Investigación despegó después de la irrupción de los fertilizantes N sintéticos
- Con abundantes suelos de baja fertilidad (principalmente Oxisoles and Ultisoles) con bajo contenido de bases y niveles tóxicos de Al+3 y frecuentemente improductivos sin un acompañamiento de cal y nutrientes

Resultados de la nueva investigación

 La mayoría de los cultivos – incluyendo leguminosas – no responden a la cal por encima del punto en el que las toxicidades son eliminadas, si nutrientes tales como Ca, Mg, Mo y P están presentes en cantidades suficientes

¿por qué debemos encalar los suelos?

Crear condiciones para la producción sostenible de cultivos

Condiciones para la producción sostenible de cultivos

- □ ausencia de toxicidades de Al⁺³ y Mn⁺²
- niveles adecuados de Ca⁺² y Mg⁺²
- acceso a agua
- disponibilidad de nutrientes esenciales
- funcionamiento de asociaciones raícesmicroorganismos
- sanidad adecuada

...¿y el pH?

- Las plantas no responden al pH por sí mismo
 - toxicidad directa del H+ prácticamente inexistente
- Nos deberíamos enfocar en los factores limitantes reales asociados con el pH
 - toxicidades
 - deficiencias
 - desbalances

En resumen: Criterios para determinar las necesidades de cal

- En base a corregir toxicidades/deficiencias /desbalances
 - Requerimiento Biológico de Cal
 - Enfocado en la planta

- En base a un pH objetivo
 - Requerimiento de Cal del Suelo
 - Enfocado al suelo

Clasifiquemos los suelos ácidos

$pH_a < 5.2-5.4$

toxicidades de Al⁺³ y Mn⁺² generalmente los factores más limitantes para el crecimiento de los cultivos

$pH_a > 5.4$

respuestas al encalado rara vez debidas a la eliminación de toxicidades sino al aumento de disponibilidad y provisión de nutrientes

Determinación de los Requerimientos de Cal

Método Combinado en base al Al intercambiable

$$CaCO_{3}(t/ha) = \frac{1.5 \text{ (Al - PRS) (C I C E)}}{100} \times \text{f (25)}$$

$$de \text{ donde:}$$

$$Al = Porcentaje de saturación de Al actual$$

PRS = Porcentaje de saturación de Al deseado

Tabla 19. Porcentaje recomendado de saturación de aluminio (PRS) para cultivos en producción (Bertsch, 1995).

(Det isen, 1993).				
Cultivo	PRS¹ (%)			
Banano Cacao Café Camote Caña de azúcar Caupí Cítricos Coco Frijol negro Gandul Maíz Mango Maní Palma aceitera Papa	(%) <15 <20 <25 <20 <40 <20 <40 <20 <40 <20 <40 <25 <20 <415 <20 <25 <20 <25 <20			
Pejibaye Piña	<25 <30			
Plátano Sorgo	<25 <20			
Soya Trigo	<10 <10			
Yuca	<60			
1. Estos valores de PRS han sido estimados a través de la práctica				

Información General

No. de Registro: SU- 11277

Centro de Recepcion:

Cond. Hidráulica :

Fecha Recepción: 01/01/2008 Fecha Entrega: 01/01/2008

ld Cliente: 4,606

Cliente: Fidel Hernandez de la Cruz

Rancho: Nuevo Eden

Sector del Predio: Dr.Domingo Chanona

Prof. Muestra: 0-20

Color Munsell

10YR6/3

Ubicación GPS Lat:

Municipio: Villa Flores Estado: Chiapas

Cultivo Anterior: Maiz

Manejo de Residuos: Incorporado Reciente

Cultivo a Plantar: Meta de Rendimiento: Ton/Ha

Tipo de Agricultura: Fuente de Agua:

Propiedades Físicas del Suelo

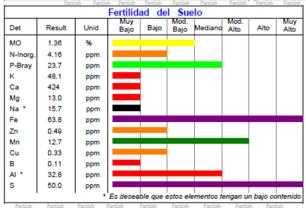
Clase Textural: Franco Arcillo Arenoso Punto de Saturación : % Mediano Seco:

Capacidad de Campo: 18.5 Punto March. Perm. : 11.0

% Mediano Hum: 10YR4/3 % Mediano Dap: 1.24 g/cm3

3.50 cm/hr Mediano

Reacción del Suelo y Necesidades de Yeso

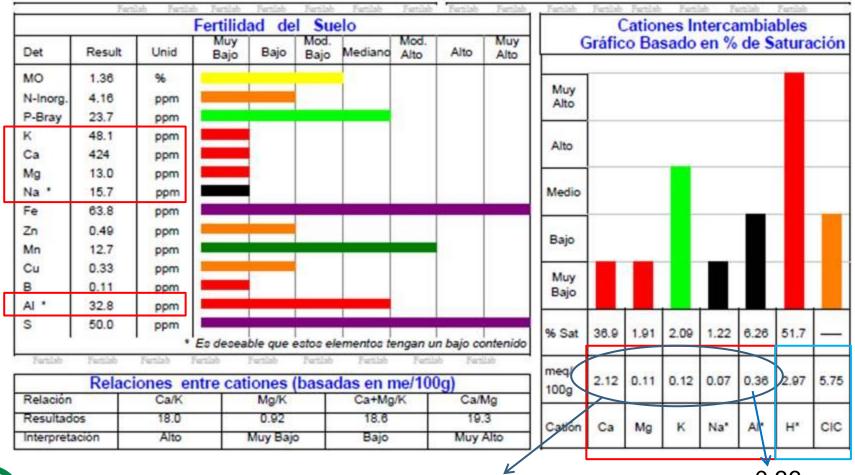

pH (1:2 agua) : 5.53 Mod. Acido

pH Buffer: 6.52

Long:

Carbonatos Totales (%): 0.01 % Libre Salinidad (CE Extracto): 0.18 ds/m Muy Bajo

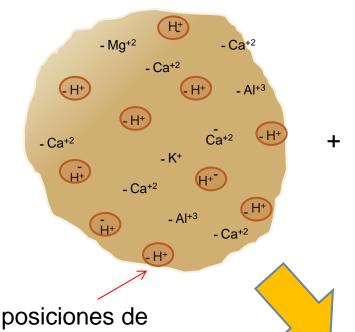
Requerimientos de Yeso : No Req. Ton/Ha


-		Cationes Intercambiables Gráfico Basado en % de Saturación							
1	Muy Alto								
	Alto								
	Medio								
	Bajo								
	Muy Bajo								
,	% Sat	36.9	1.91	2.09	1.22	6.26	51.7	_	
7	meq/ 100g	2.12	0.11	0.12	0.07	0.36	2.97	5.75	
1	Catión	Ca	Mg	к	Na*	AI*	н•	CIC	

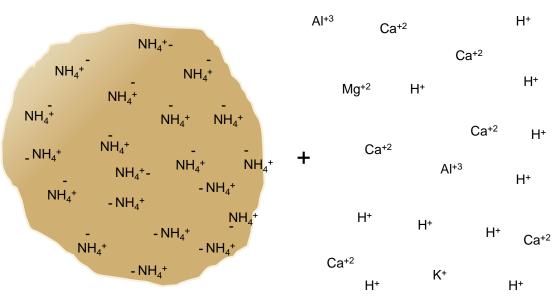
Rela	aciones entre	cationes (bas	adas en me/10)0a)
Relación	Ca/K	Mg/K	Ca+Mg/K	Ca/Mg
Resultados	18.0	0.92	18.6	19.3
Interpretación	Alto	Muy Bajo	Bajo	Muy Alto

Interpretación Resumida del Diagnostico de la Fertilidad del Suelo

CaCO3.MgCO3=1.8 Cal Dolomitizada Tn/ha



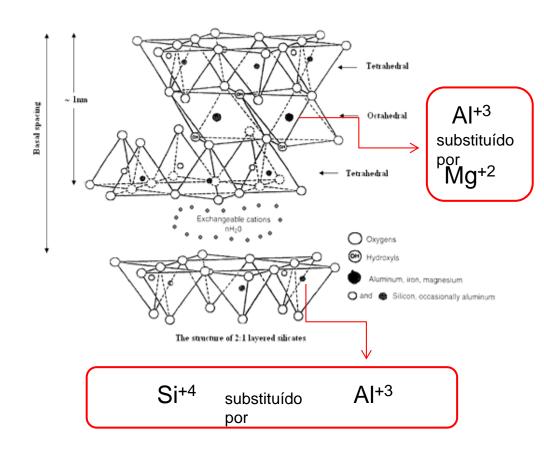
2.78 meq/100g = CICe $AI_{int} = \frac{0.36}{2.78} = 139$



acetato de amonio (NH₄+OAc) pH=7 la CIC medida a pH 7 no es representativa de la realidad. Por eso se determina la CIC efectiva (CIC_e) estimada al pH del suelo.

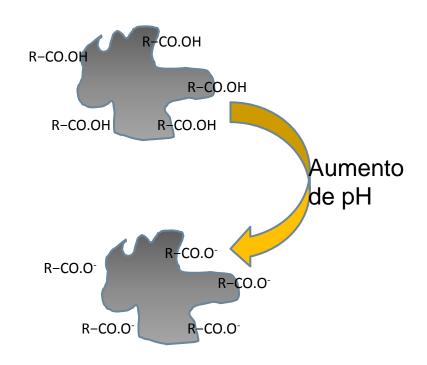
intercambio no disponibles a pH 5.5

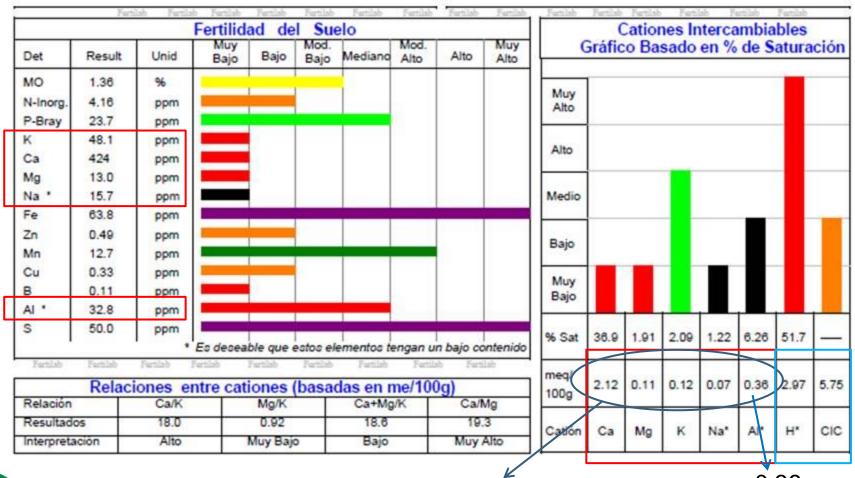
El aumento del pH "crea" nuevas posiciones de intercambio



pH=7.0

Cargas eléctricas en los suelos


- Permanentes
 - Estructuras de arcillas



Cargas eléctricas en los suelos

- Variables
 - Dependen del pH
 - Materia orgánica

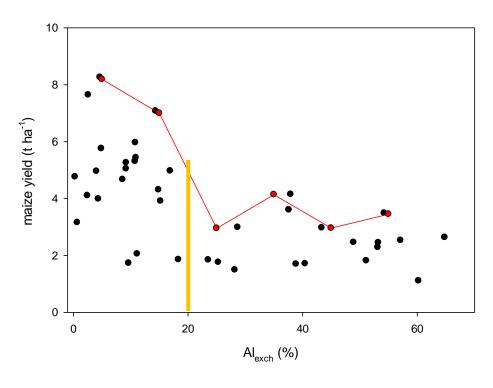
2.78 meq/ 100g = CICe Al

 $Al_{int} = \frac{0.36}{2.78} = 13\%$

$$CaCO_3(t/ha) = \frac{1.5 (Al - PRS) (C I C E)}{100} \times f$$

Datos de Chiapas

localidad	рН	K	Ca	Mg	Al	CICe	AI(%)
1	4.5	0.16	2.92	0.22	2.2	5.5	40
2	4.9	0.14	2.89	0.26	0.6	3.9	16
3	4.6	0.28	3.67	0.44	1.5	5.9	25
4	4.5	0.26	2.43	0.24	1.0	4.0	25
5	4.7	0.13	2.60	0.16	0.8	3.7	22
6	4.8	0.17	3.45	0.48	0.6	4.8	13
7	4.5	0.17	2.00	0.28	1.0	3.4	28
8	5.9	0.18	1.23	3.65	0.8	5.9	14
9	4.8	0.20	3.08	0.76	0.9	5.0	18

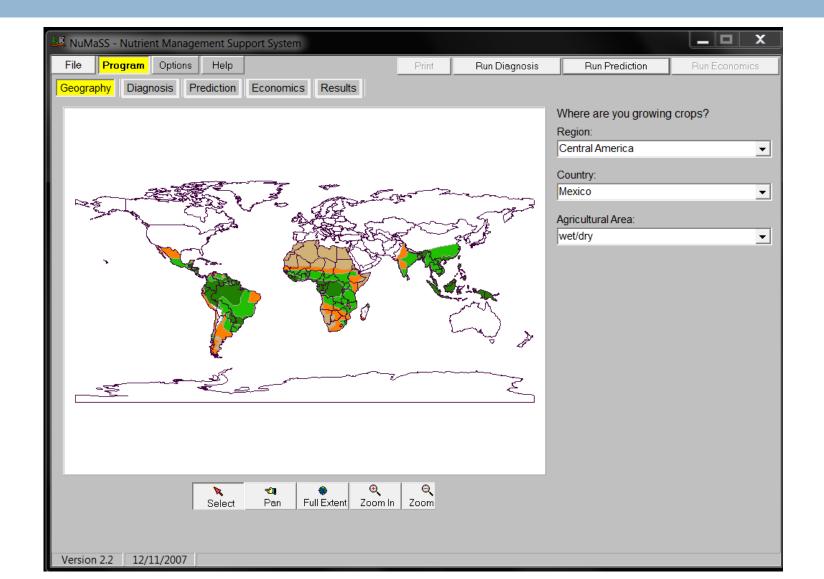

Enmienda	Origen	Eficiencia granulométrica (EG)	Equivalente químico (EQ)	Poder relativo de neutralización (PRNT)
Cal agrícola	Hidalgo	98.9	104.3	103
Cal agrícola	Jalisco	97.8	99.6	97
Cal dolomítica	Puebla	67.8	66.8	45
Cal agrícola	Puebla	59.1	90.5	53
Cal agrícola	Chiapas	95.5	0	0

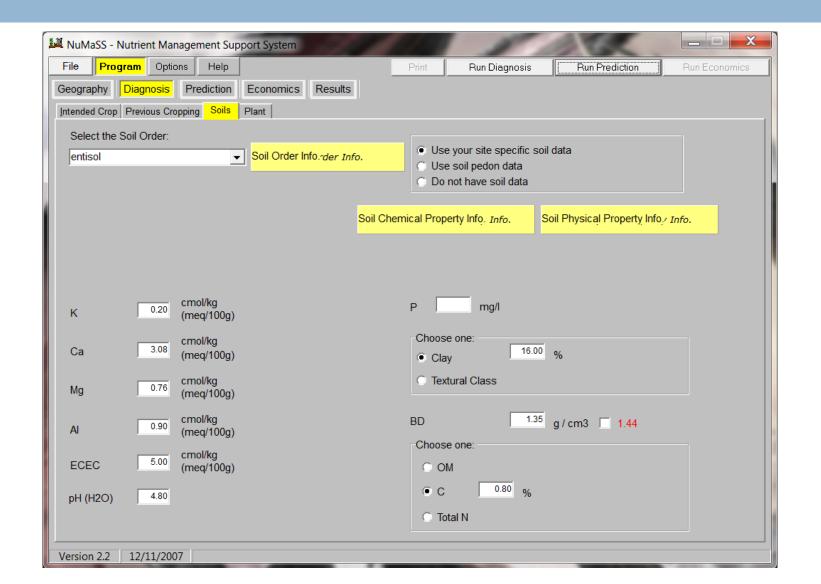
Estimaciones usando la fórmula

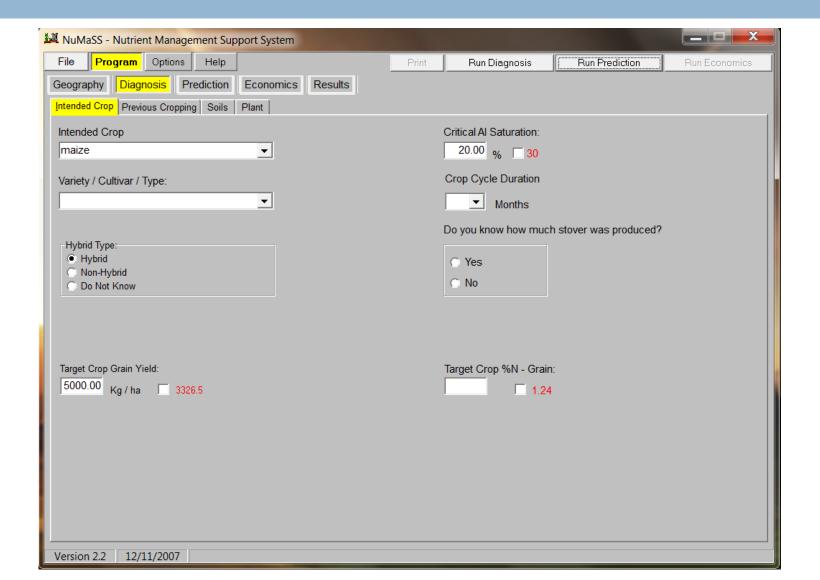
localidad Al _{int (%)}		Cal agrícola de Hidalgo	Cal agrícola de Jalisco	Cal dolomítica de Puebla	Cal agrícola de Puebla		
	(70)		t enmienda ha ⁻¹				
1	40	1.65	1.75	3.78	3.15		
2	16	0	0	0	0		
3	25	0.44	0.47	1.00	0.84		
4	25	0.29	0.31	0.67	0.56		
5	22	0.10	0.10	0.22	0.19		
6	13	0	0	0	0		
7	28	0.39	0.42	0.90	0.75		
8	14	0	0	0	0		
9	18	0	0	0	0		
PRNT		103	97	45	54		

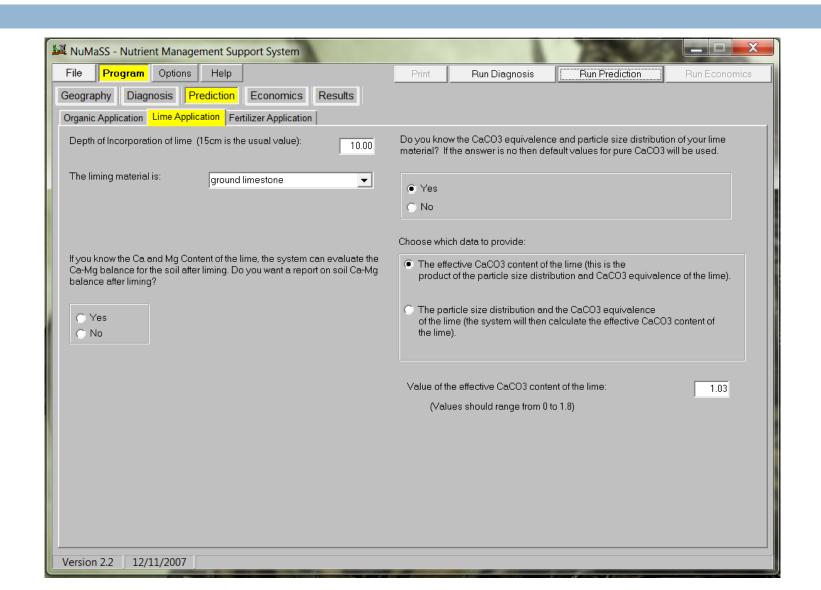
Efectos de Al en maíz

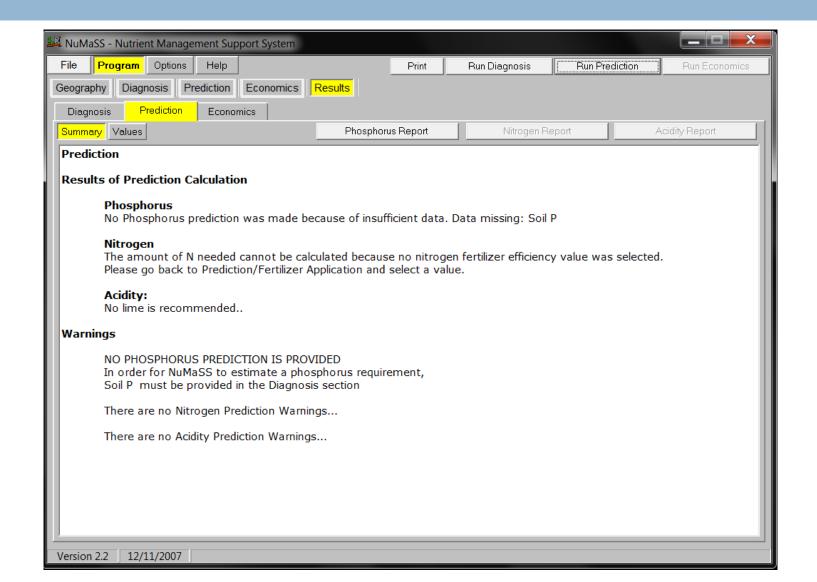
Resultados de La Frailesca




- Valor crítico de Al_{int} (%) ~20%
- Se necesita más información




NuMaSS


- Sistema experto para manejar N, P, y acidez
- Nutrient Management Support System
- Evaluado en noreste de México
- http://intdss.soil.ncsu.edu/

NuMaSS

 Es necesario evaluarlo en condiciones de campo

Estimaciones usando NuMaSS

localidad	Al _{int} (%)	Cal agrícola de Hidalgo	Cal agrícola de Jalisco	Cal dolomítica de Puebla	Cal agrícola de Puebla			
	(70)	t enmienda ha ⁻¹						
1	40	1.25	1.25	3.0	2.5			
2	16	0	0	0	0			
3	25	0.4	0.4	0.75	0.75			
4	25	0.2	0.2	0.5	0.4			
5	22	0.1	0.1	0.2	0.1			
6	13	0	0	0	0			
7	28	0.4	0.4	0.75	0.75			
8	14	0	0	0	0			
9	18	0	0	0	0			
PRNT		103	97	45	54			

Principales Efectos del Encalado

- Neutralización de Al y Mn
- Aporte de Ca y Mg
- Mayor disponibilidad de P y Mo
- Favorece mineralización de M.O.
- Promueve fijación simbiótica de N
- Mejora propiedades físicas
- Estimula desarrollo de raíces

Respuestas al encalado

Respuestas al encalado

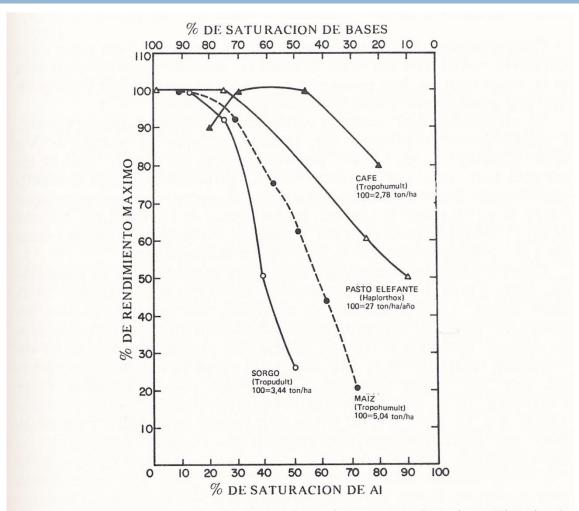
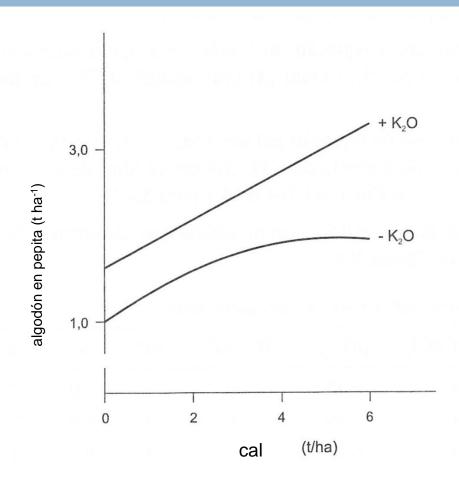
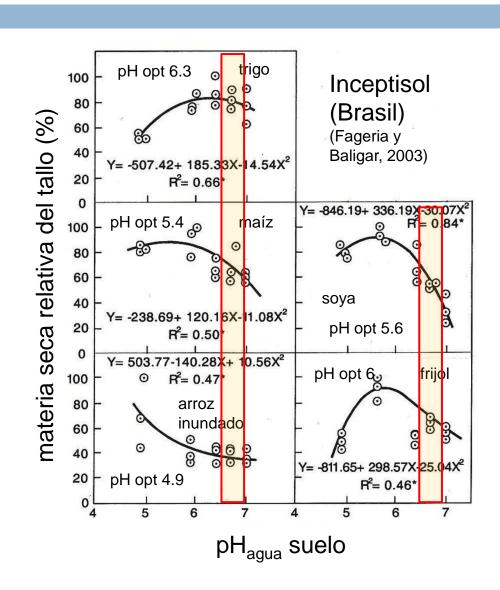
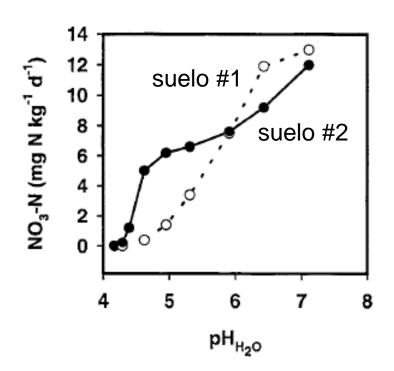



Fig. 7.11. Respuestas de rendimiento al encalamiento en Oxisoles y Ultisoles de Puerto Rico. (Fuente: compilado de Abruña et al, 1964, 1965, 1975).


Interacciones

Sobreencalado

- Llevar el pH del suelo a ~7
 - Influencia de experiencias en suelos del Oeste Medio de EE.UU.
 - Efectos adversos
 - Menor disponibilidad de P, B, Zn, Cu, Fe y Mn
 - Deterioro de la estructura



Ventajas de no elevar mucho el pH

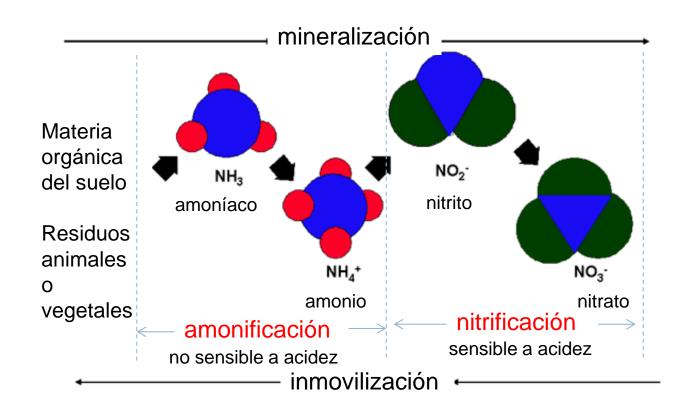
□ N

- Nitrificación se acelera con mayor pH
- □ $(NH_4)_2SO_4 + O_2 \rightarrow$ $2HNO_3 + H_2SO_4 +$ $2H_2O$
- Condiciones relativamente ácidas disminuyen peligro de pérdidas de N

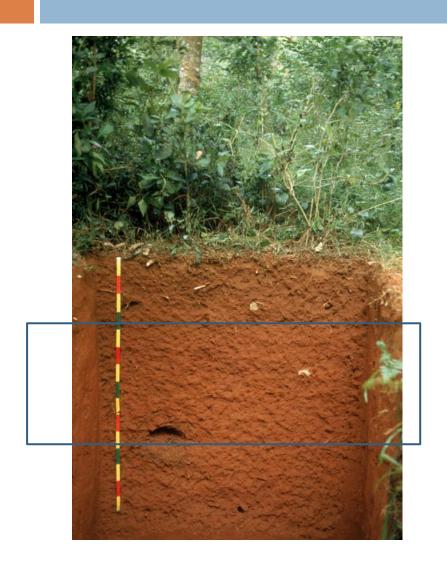
N

□
$$R-NH_2 + 2O_2 \rightarrow R-OH + H^+ + NO_3^-$$

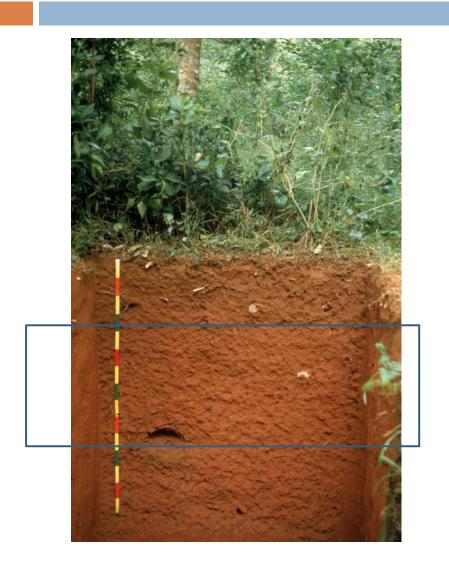
N orgánico


Amonificación (R-NH $_2 \rightarrow NH_4^+$) No afectada por acidez en rango normal de suelos

Nitrificación (NH₄⁺ \rightarrow NO₃⁻) sensible a acidez


Mineralización e inmovilización

Created by J. Strock University of Minnesota


Acidez sub-superficial

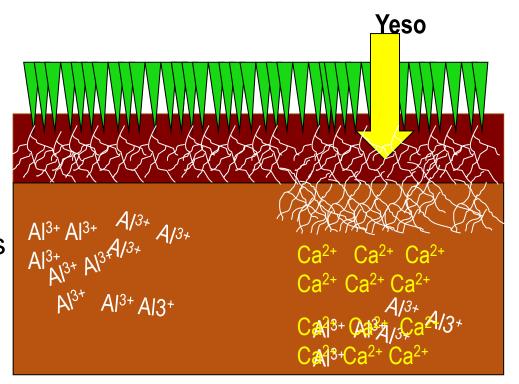
- Síntomas
 - Falta de agua
 - Falta de nutrientes

Acidez sub-superficial

- Difícil de tratar
 - La cal no se mueve fácilmente en el suelo
- Necesidad de fuente de Ca más soluble que la cal
- El yeso es la solución al problema
 - Solubilidad de yeso (2.2 g/L)>> solubilidad de cal (0.014 g/L)
 - **(**x 157)

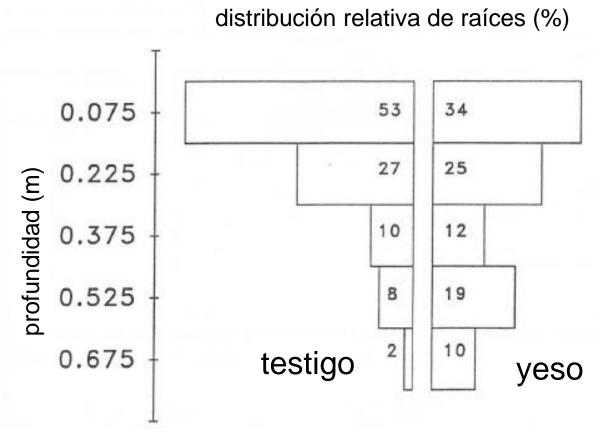
Subsuelos ácidos

- Origen natural o antropogénico
- Bajo contenidos de cationes básicos (Ca, Mg, K)
- Frecuentemente con niveles tóxicos de Al³⁺


Al intercambiable (%) en capa arable y subsuelo – La Frailesca (Chiapas)

productor	capa arable (0-15 cm)	subsuelo (15-30 cm)			
productor	Al _{int} (%)				
Pedro Castro Espinoza	44	23			
Raquel Padilla Saldaña	40	26			
Francisco Sánchez Velázquez	28	49			
Rausel Gómez	27	22			
Efraim Gomez Solís	25	32			
Adrián Moreno Espinoza	16	29			
Joaquin Altamirano Domínguez		50			

7 productores en 23 muestreados = 30%


Efectos del yeso en el subsuelo

- Más Ca⁺²
- Menos Al+3
 - Más raíces
 - Absorción de agua
 - Absorción de nutrientes

Efecto del yeso en raíces

Absorción de N

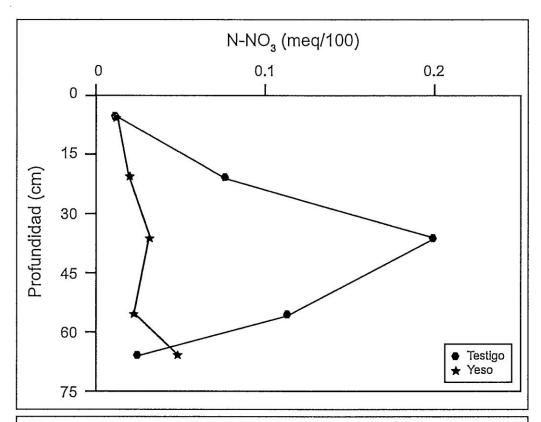
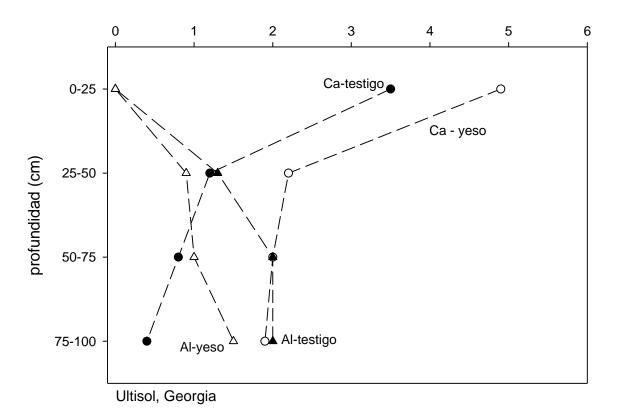
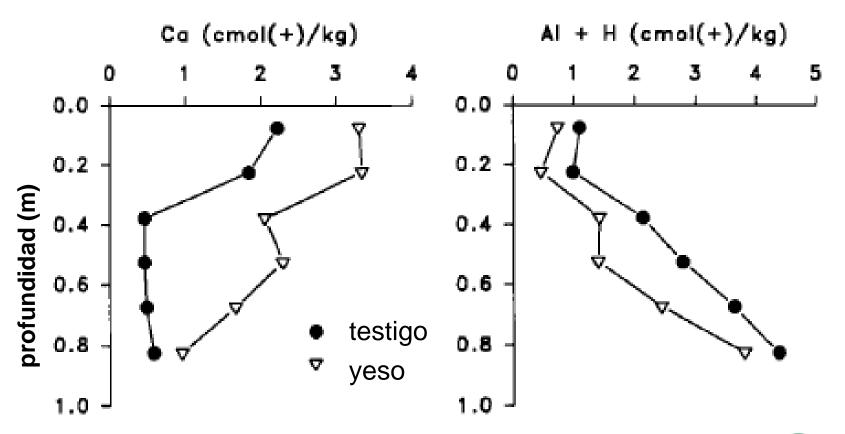


Figura 11. La aplicación de yeso permitió un mejor crecimiento radicular del maíz que utilizó adecuadamente el NO³⁻ presente en el suelo (Malavolta, 1992).



Residualidad del yeso

- 10 t yeso/ha,aplicadas en1982
- Suelo analizado en 1997

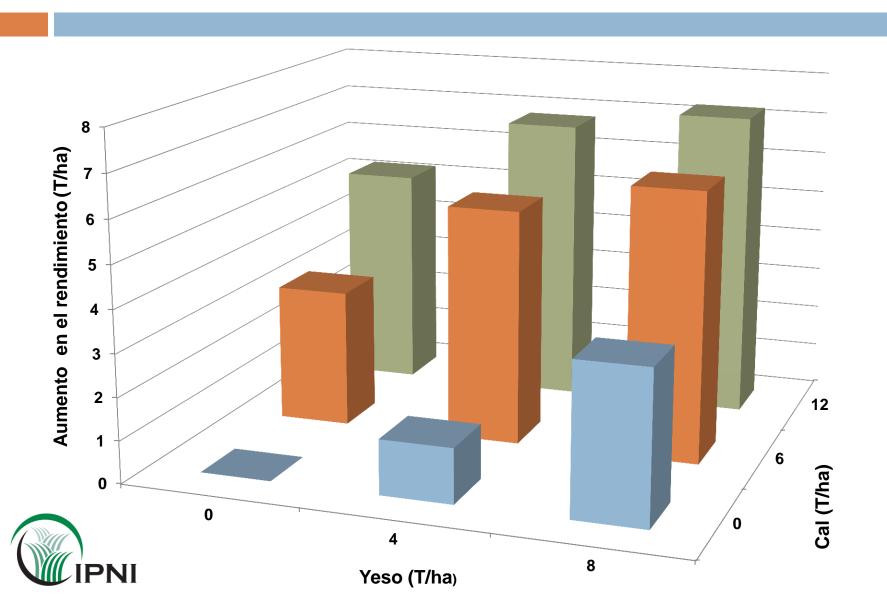

Tratamiento	Rendimiento (t/ha)				
	Alfalfa	Maíz	Alfalfa		
(1982)	(1982-1989)	(1997)	(1998)		
Testigo	5.29	6.59	5.33		
10 t yeso/ha	7.51 (+ 42%)	8.50 (+ 29%)	9.09 (+ 71%)		

meq/100 g

Efecto del yeso en Al y Ca intercambiables

Mecanismos implicados en la desintoxicación de Al³⁺

□ Formación del par iónico AISO₄⁺ $AI^{3+} + CaSO_4.2H_2O \rightleftharpoons AISO_4^+ + Ca^{2+} + 2H_2O$


Efecto de auto-encalado (Self Liming Effect)

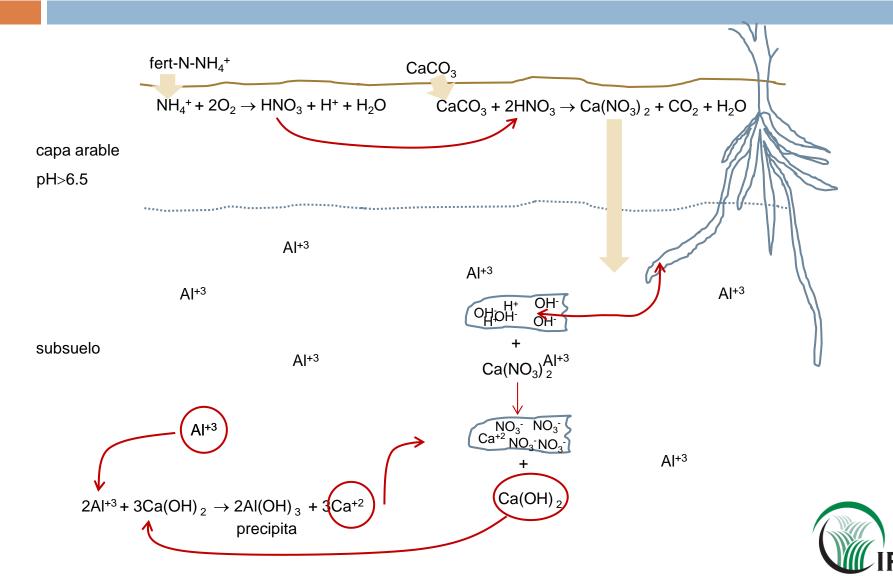
$$\left[\begin{array}{c|c} OH & OH \\ \hline \\ Fe & OH \end{array}\right]^0 + Ca^2 + SO_4^2 \iff \left[\begin{array}{c|c} SO_4^{-} & Fe \\ \hline \\ OH & OH \end{array}\right]^{-1} + Ca^2 + OH^2$$

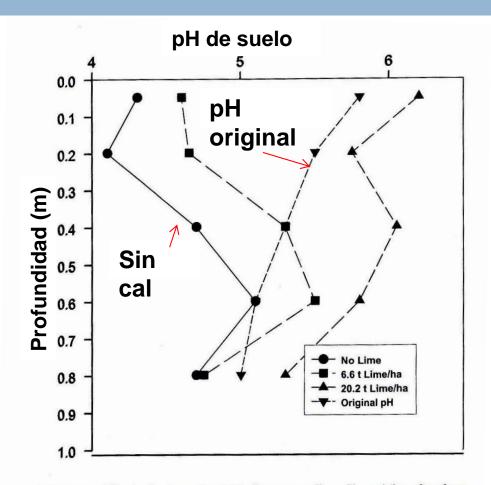
$$Al^{3+} + 3OH^{-} \rightarrow Al(OH)_{3}$$

Respuestas de yeso y cal en maíz

Precauciones al usar yeso

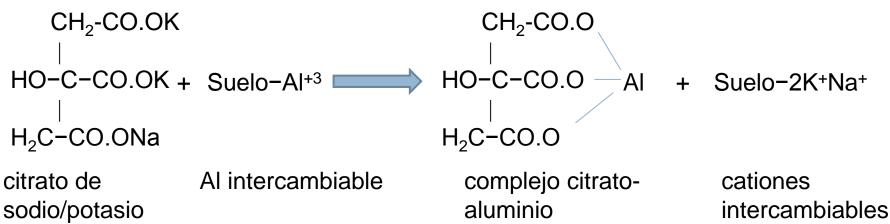
- Lavado de Mg y/o K
 - Dosis de yeso > 5 t ha⁻¹
 - Suelos arenosos
- Precauciones
 - Cuidado con la dosis a aplicar
 - Aplicar Mg después que el yeso penetró al suelo




Estrategias alternativas para corregir la acidez del subsuelo

- Cal + fertilizantes nitrogenados amoniacales
- Ligandos orgánicos
- MO como cal

Cal + fertilizantes nitrogenados amoniacales


Figure 1 Effect of rates of calcitic lime on soil profile acidity after four years under a Coastal bermudagrass sod fertilized with ammonium nitrate at an annual N rate of 900 kg/ha. Single lime applications were made at the beginning of the experiment (from Adams et al. 1967).

- 900 kg N/ha/año como nitrato de amonio
- durante 4 años

Ligandos orgánicos

- se mueven en el subsuelo
- abundan en estiércol, especialmente de aves
- forman complejos y desintoxican Al

Grado de acidificación con estiércol o residuos

Depende del balance entre contenido de N, S, y cationes básicos

descenso de pH

- Residuos con mayor proporción de N y/o S
- Nmineralizado + nitrificado
- S oxidación:

$$R-CH2-SH + 2O2 + H2O$$

$$\rightarrow H2SO4 + R-CH3O$$

ascenso de pH

 Residuos con mayor proporción de cationes básicos

$$2\text{CaC}_2\text{O}_4 + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow$$

 $\text{Ca}(\text{HCO}_3)_2 + \text{Ca}(\text{OH})_2 +$
 2CO_2

Agricultura de Conservación

- Materia orgánica disuelta
 - Ligandos orgánicos de bajo peso molecular
 - Forman complejos con cationes
 - Al+3, Ca+2, Mg+2
 - Corrigen toxicidad del Al+3 en capa arable
 - Ayudan a corregir acidez en subsuelo

pH en suelo con Labranza Cero (ZT) o Convencional (CT), con rotación (R) o monocultivo (M), con retención de residuos (+) o removidos (-), después de 14 años -El Batán

	pH en las diferentes capas de suelo					
Tratamiento	Maíz			Trigo		
	0-5 cm	5-10 cm	10-20 cm	0-5 cm	5-10 cm	10-20 cm
ZTM+r	6.23	6.31	6.60	6.05	6.50	6.60
ZTR+r	6.04	6.30	6.65	6.05	6.50	6.45
CTM+r	6.21	6.17	6.65	6.16	6.50	6.38
CTR+r	6.19	6.41	6.66	6.15	6.55	6.48
ZTM-r	5.27	6.10	6.40	5.85	6.55	6.72
ZTR-r	5.74	6.41	6.70	5.29	6.40	6.34
CTM-r	6.00	6.12	6.50	6.00	6.60	6.54
CTR-r	6.16	6.30	6.65	6.05	6.50	6.36
DMS	0.37	0.34	0.23	0.26	0.16	0.24

MO como cal

- La mayoría del Ca en las plantas está en forma de oxalato o pectato
- Cuando el material vegetal se descompone se libera CaCO₃

$$Ca(OOC)_2 + \frac{1}{2}O_2 \rightarrow CaCO_3 + CO_2$$

 $Ca(C_6H_{11}O_7)_2.H_2O + 11O_2 \rightarrow CaCO_3 + 11CO_2 + 12H_2O$

 El efecto del encalado debe ser equilibrado por el efecto de la acidificación del N en los residuos vegetales

200 t hojas ha⁻¹ / pH inicial 4.0

Material	g N kg ⁻¹	Ca+Mg+K (mmol c kg ⁻¹)	pH máximo	Días para el pH máximo	pH final (574 d)
algodón	26.9	2944	7.88	92	7.60
alfalfa	32.4	1653	8.49	22	6.84
maíz	10.0	958	6.32	8	5.44
trigo	4.6	344	5.12	8	4.85
composta	7.1	1217	5.97	8	5.93

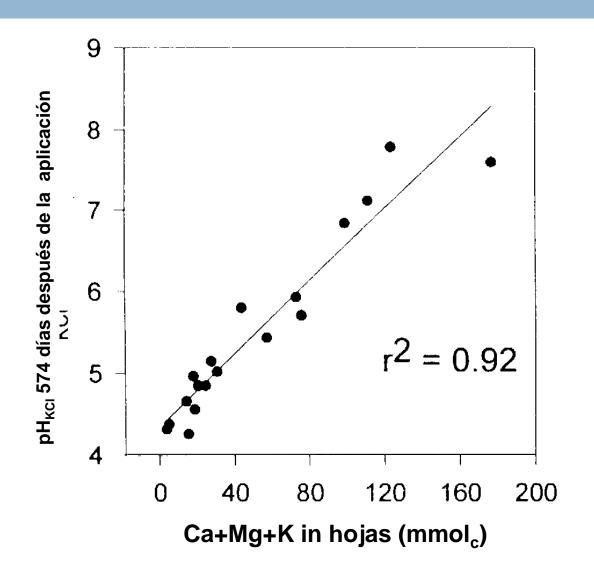
Dos tipos de efectos

- Corto plazo

 (elevación y
 descenso del pH)
 - Mineralización y nitrificación de N

- Largo plazo (elevación del pH)
 - Mineralización de compuestos conteniendo cationes básicos

```
pH ↑ pH ↓


amonificación nitrificación

R-CH(NH_2)-CO.OH + NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + NO_3^- + H_2O + 2H^+
```

pH ↑

$$Ca(CO.O)_2 + \frac{1}{2}O_2 + 2H^+ \rightarrow 2CO_2 + H_2O + Ca^{+2}$$

Efecto del contenido de cationes básicos en hojas sobre el pH del suelo

Resultados de Análisis de Suelos de Jalisco

Municipio	Localidad	Textura	pH - agua	Interpretación	Prof (cm)
Ameca	Paseo del Aire	Franco arenosa	6.86	Ligeramente ácido	
Mascota	El Refugio	Franco limosa	5.60	Moderadamente ácido	
Mirandillas	Potrero	Franco limosa	5.23	Moderadamente ácido	
Talpa	Talpa	Franco arenosa	4.47	Moderadamente ácido	
Jocotepec	La Mina	Franco limosa	6.37	Ligeramente ácido	
Tlajomulco	Cacaluta	Franco arenosa/arenoso franca	5.86	Moderadamente ácido	
Tlajomulco	La Cofradia	Franco arenosa	5.83	Moderadamente ácido	
Poncitlan	La Joya	Franco arenosa	5.26	Moderadamente ácido	
Poncitlan	El Centro	Franco arenosa	4.67	Moderadamente ácido	
Poncitlan	La Joya	Franco arenosa	4.63	Moderadamente ácido	
Poncitlan	La Joya	Franco arenosa	4.46	Moderadamente ácido	
Poncitlan	La Joya	Franco arenosa	4.56	Moderadamente ácido	
Poncitlan	La Joya	Franco arenosa	4.65	Moderadamente ácido	
Tlajomulco	Tlajomulco		4.90		
Tlajomulco	Tlajomulco		5.00		
Tlajomulco	La Cofradia	Franca	4.53	Fuertemente ácido	30
Tlajomulco	Cajilota	Franco arcillosa	5.00	Fuertemente ácido	30

Tres laboratorios

Variable	Lab #1	Lab #2	Lab #3
рН	1:2	1:2	1:1
Sol amortiguadora		SMP	Adams-Evans
Extracción de K, Ca, Mg, y Na	Mehlich 2	Acetato de amonio 1N pH7	Mehlich 3
Al intercambiable		N KCI	

 Sólo dos resultados con datos sobre profundidad de muestreo

0-30 cm es un intervalo muy amplio

¿cómo incorporar cal uniformemente en 30 cm de

suelo?

- Suponiendo discos de 24" de diámetro (60 cm)
- Profundidad de incorporación máxima ~ 10 cm (~ 1/3 de profundidad de trabajo)

□ En estas localidades se recomendó 2 t cal ha⁻¹

Tlajomulco	Cacaluta	Franco arenosa/arenoso franca	5.86	Moderadamente ácido	
Tlajomulco	La Cofradia	Franco arenosa	5.83	Moderadamente ácido	

No se indicaron las razones

En estas localidades se recomendó:

Tlajomulco	Tlajomulco	4.90	5.0 t cal ha ⁻¹	
Tlajomulco	Tlajomulco	5.00	6.5 t cal ha ⁻¹	

Solución Adams-Evans

Sólo dos resultados incluyen datos de Al

Localidad La Cofradía

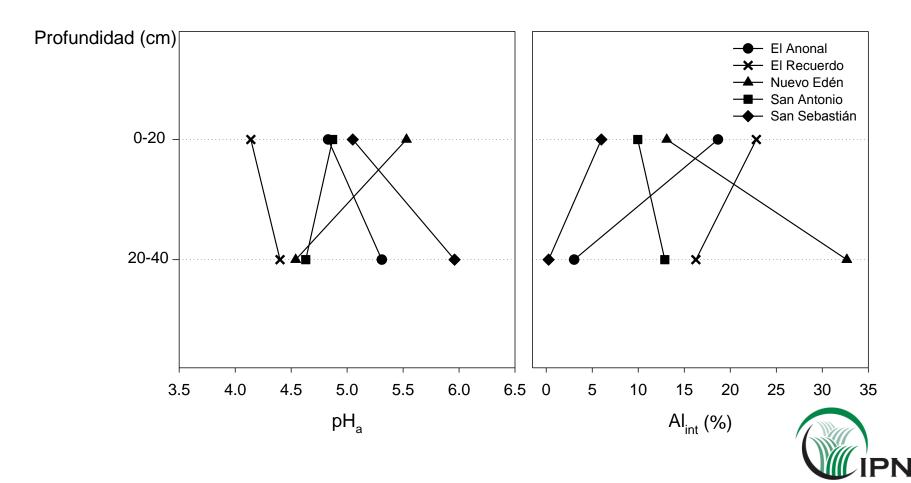
localidad	рН	K	Ca	Mg	Na	Al	CICe	0/ 1
		cmol ₊ kg ⁻¹						%AI
La Cofradia	4.53	0.8	2.51	0.57	0.06	0.4	4.34	9.2

Recomendaciones de cal

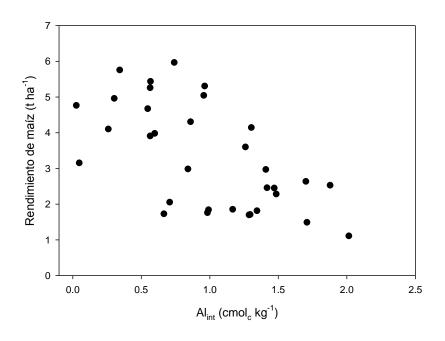
formula	NuMaSS	laboratorio 4	
0	0	3 t ha ⁻¹	

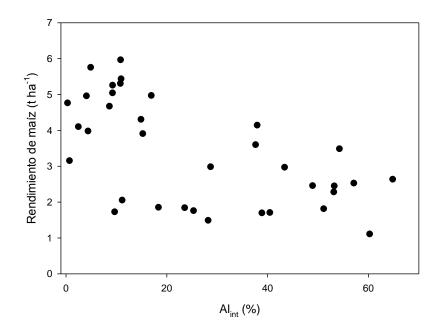
Solución amortiguadora SMP

¿recomendación correcta?


- Se deben evaluar en el campo
- Sugerencia
 - Seleccionar una serie de localidades (~ 5 a 6) con suelos ácidos
 - Calcular requerimientos de cal con fórmula,
 NuMaSS, y recomendaciones del laboratorio
 - Aplicar recomendaciones y comparar resultados en el campo

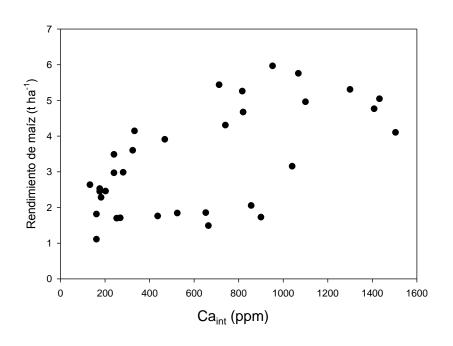
Resultados de Análisis de Suelos de La Frailesca – abril 2012

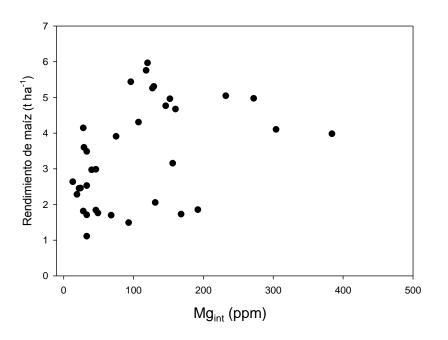

Resultados de análisis de suelos de La Frailesca


□ pH y Al_{int}

Efectos de Al en maíz

Resultados de La Frailesca





Efectos de Ca y Mg en maíz

Resultados de La Frailesca

Conclusiones

- pH influye en disponibilidad de nutrientes y toxicidades
- pH propiedad dinámica
- medición de pH sujeta a errores considerables
- pH mide la intensidad de la acidez
- es necesario conocer la capacidad de la acidez (capacidad amortiguadora del suelo)
- acidificación descontrolada lleva a degradación de los suelos

Conclusiones

- enfocar la determinación de las necesidades de cal en los cultivos más que en los suelos
- los subsuelos pueden ser más acidos que las capas arables
- urge generar conocimiento local
- enfatizar evaluaciones de campo

Referencias

- Adams, F. (1981) Alleviating chemical toxicities: Liming acid soils. Cap. 8 en (Arkin, G.F. y H.M. Taylor, Eds.) Modifying the root environment to reduce crop stress. ASAE Monograph Number 4. 407 pp
- Aguilar S., A., G. Alcántara, y J. Etchevers. (1994) Acidez del suelo y encalado en México. Sociedad Mexicana de la Ciencia del Suelo. 56 pp
- Black, C.A. (1993) Soil testing and lime requirement. Cap 8 en Soil fertility evaluation and control. Lewis. 746 pp
- Grundon, N. J. (1987). Hungry crops: a guide to nutrient deficiencies in field crops.
 Department of Primary Industries. Queensland. 242 pp
- Castellanos, J.,J. Cueto, J. Macías, J. Roel, L. M. Tapia, J. M. Cortés, I. J. González, H. Mata, M. Mora, A. Vázquez, C. Valenzuela, y S. Enríquez. (2005). La fertilización en los cultivos de maíz, sorgo, y trigo en México. Folleto Técnico Num. 1 CIRC. CEB.
- Edmeades, D.C. y A. M. Ridley. (2003). Using lime to ameliorate topsoil and subsoil acidity. Cap 11 en (Z. Rengel, Ed.) Handbook of soil acidity. Marcel Dekker. 496 pp
- Fuentes, M., Govaerts, B., De León, F., Hidalgo, C., Dendooven, L., Sayre, K. D., and Etchevers, J. (2009). Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. *European Journal of Agronomy* 30, 228-237

Referencias

- Lierop, W. V. (1990). Soil pH and Lime Requirement Determination. *In* "Soil Testing and Plant Analysis", pp. 73-126. SSSA.
- Pocknee, S., and Sumner, M. E. (1997). Cation and Nitrogen Contents of Organic Matter Determine Its Soil Liming Potential. Soil Sci. Soc. Am. J. 61, 86-92
- Raij, B. van. (2011) Acidez e calagem. Cap. 8 en Fertilidade do solo e Manejo de nutrientes. IPNI. 420 pp
- Sánchez, P. (1981) Acidez del suelo y encalamiento. Cap 7 en Suelos del Trópico.
 Características y Manejo. IICA. 634 pp
- Sims, J. T. (1996). Lime Requirement. Methods of Soil Analysis Part 3—Chemical Methods sssa bookseries, 491-515
- Smyth, T. (2012). Soil acidity and liming. Cap. 12 en (P. Ming Huang, Y. Li, y M. E. Sumner, Eds.) Handbook of soil sciences. Resourde management and environmental impacts. CRC Press.
- Sumner, M. E., M.V. Fey, y A. D. Noble (1991). Nutrient status and toxicity problems in acid soils. Cap. 7 en (Ulrich, B. y M.E. Sumner, Eds.) Soil Acidity. Spring Verlag.
- Sumner, M. E. (1993). Gypsum and Acid Soils: The World Scene. In "Advances in Agronomy" (L. S. Donald, ed.), Vol. Volume 51, pp. 1-32. Academic Press

Referencias

- Sumner, M. E. (1994). Measurement of soil pH: Problems and solutions.
 Communications in Soil Science and Plant Analysis 25, 859-879.
- Sumner, M.E. (1995) Amelioration of subsoil acidity with minimum disturbance. En (N.S. Jayawardane y B.A. Stewart, Eds.) Subsoil Management Techniques. Advances in Soil Science. Lewis. 247 pp
- Sumner, M.E. (1997) Procedures used for diagnosis and correction of soil acidity: A critical review. En (A.C. Moniz, Ed.) Plant-Soil Interactions at Low pH. 195-204
- Sumner, M. E. y Yamada, T.(2002). FARMING WITH ACIDITY. Communications in Soil Science and Plant Analysis 33.
- Zetina L., R., L. Pastrana, J. Romero, y J. Jiménez. (2002). Manejo de Suelos Ácidos Para la Región Tropical Húmeda de México. CIRGC. Libro Técnico No. 10. 170 pp

Dr. Armando Tasistro

Director, México y América Central, IPNI, Norcross, GA, EE.UU.

atasistro@ipni.net

